forked from GeomScale/dingo
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'GeomScale:develop' into develop
- Loading branch information
Showing
1 changed file
with
306 additions
and
0 deletions.
There are no files selected for viewing
306 changes: 306 additions & 0 deletions
306
dingo/experimental_gurobi_functions/redundant_facet_removal_experiment.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,306 @@ | ||
# dingo : a python library for metabolic networks sampling and analysis | ||
# dingo is part of GeomScale project | ||
|
||
# Copyright (c) 2021 Apostolos Chalkis | ||
|
||
# Licensed under GNU LGPL.3, see LICENCE file | ||
|
||
import sys | ||
import numpy as np | ||
import scipy.sparse as sp | ||
import gurobipy as gp | ||
from gurobipy import GRB | ||
import math | ||
|
||
def update_model_constraints_and_bounds(model, Aeq_sparse=None, beq=None, A_sparse=None, b=None, | ||
new_lower_bounds=None, new_upper_bounds=None): | ||
if Aeq_sparse is not None and beq is not None: | ||
# Remove the old equality constraints | ||
model.remove("c") | ||
|
||
# Add new equality constraints | ||
model.addMConstr(sp.csr_matrix(Aeq_sparse), model.getVars(), "=", np.array(beq), name="c") | ||
|
||
if A_sparse is not None and b is not None: | ||
# Remove the old inequality constraints | ||
model.remove("d") | ||
|
||
# Add new inequality constraints | ||
model.addMConstr(sp.csr_matrix(A_sparse), model.getVars(), "<", np.array(b), name="d") | ||
|
||
if new_lower_bounds is not None or new_upper_bounds is not None: | ||
# Retrieve the variable objects | ||
x_vars = model.getVars() | ||
|
||
# Update variable bounds if specified | ||
if new_lower_bounds is not None: | ||
for i, x_var in enumerate(x_vars): | ||
x_var.lb = new_lower_bounds[i] | ||
|
||
if new_upper_bounds is not None: | ||
for i, x_var in enumerate(x_vars): | ||
x_var.ub = new_upper_bounds[i] | ||
|
||
# Update the model to apply the changes | ||
model.update() | ||
|
||
# Usage example: | ||
# Assuming you have a Gurobi model 'model' and new constraint matrices/vectors and bounds | ||
# Call the function to update the model | ||
# update_model_constraints_and_bounds(model, Aeq_sparse_new, beq_new, A_sparse_new, b_new, new_lower_bounds, new_upper_bounds) | ||
|
||
|
||
def solve_lp_with_different_objectives(model, new_objective_coeffs): | ||
""" | ||
Solve a linear program with a different objective function. | ||
Parameters: | ||
model (gurobipy.Model): The Gurobi model with the original constraints. | ||
new_objective_coeffs (list or numpy.ndarray): List or array of new objective coefficients for the variables. | ||
Returns: | ||
gurobipy.Model: The updated Gurobi model with the new objective function. | ||
""" | ||
# Clear the existing objective function | ||
model.setObjective(0, clear=True) | ||
|
||
# TODO: Optimization opportunity - You could pass a numpy array here (instead of a list of coefficients) | ||
# and update the objective in one call without a for loop. | ||
# For example, you can use: | ||
# model.setObjective(new_objective_coeffs, GRB.MINIMIZE) | ||
|
||
# Update the objective function with the new coefficients | ||
for i, var in enumerate(model.getVars()): | ||
var.setAttr(GRB.Attr.Obj, new_objective_coeffs[i]) | ||
|
||
# Optimize the updated model | ||
model.optimize() | ||
|
||
return model | ||
|
||
|
||
def fast_remove_redundant_facets(lb, ub, S, c, opt_percentage=100): | ||
if lb.size != S.shape[1] or ub.size != S.shape[1]: | ||
raise Exception( | ||
"The number of reactions must be equal to the number of given flux bounds." | ||
) | ||
|
||
redundant_facet_tol = 1e-07 | ||
tol = 1e-06 | ||
|
||
m = S.shape[0] | ||
n = S.shape[1] | ||
beq = np.zeros(m) | ||
Aeq_res = S | ||
|
||
A = np.zeros((2 * n, n), dtype="float") | ||
A[0:n] = np.eye(n) | ||
A[n:] -= np.eye(n, n, dtype="float") | ||
|
||
b = np.concatenate((ub, -lb), axis=0) | ||
b = np.asarray(b, dtype="float") | ||
b = np.ascontiguousarray(b, dtype="float") | ||
|
||
max_biomass_flux_vector, max_biomass_objective = fast_fba(lb, ub, S, c) | ||
val = -np.floor(max_biomass_objective / tol) * tol * opt_percentage / 100 | ||
|
||
b_res = [] | ||
A_res = np.empty((0, n), float) | ||
beq_res = np.array(beq) | ||
|
||
try: | ||
with gp.Env(empty=True) as env: | ||
env.setParam("OutputFlag", 0) | ||
env.start() | ||
|
||
with gp.Model(env=env) as model: | ||
x = model.addMVar( | ||
shape=n, | ||
vtype=GRB.CONTINUOUS, | ||
name="x", | ||
lb=lb, | ||
ub=ub, | ||
) | ||
|
||
Aeq_sparse = sp.csr_matrix(S) | ||
A_sparse = sp.csr_matrix(np.array(-c)) | ||
b_sparse = np.array(val) | ||
|
||
b = np.array(b) | ||
beq = np.array(beq) | ||
|
||
model.addMConstr(Aeq_sparse, x, "=", beq, name="c") | ||
model.update() | ||
model.addMConstr(A_sparse, x, "<", [val], name="d") | ||
model.update() | ||
|
||
model_iter = model.copy() | ||
|
||
indices_iter = range(n) | ||
removed = 1 | ||
offset = 1 | ||
facet_left_removed = np.zeros((1, n), dtype=bool) | ||
facet_right_removed = np.zeros((1, n), dtype=bool) | ||
|
||
while removed > 0 or offset > 0: | ||
removed = 0 | ||
offset = 0 | ||
indices = indices_iter | ||
indices_iter = [] | ||
|
||
Aeq_sparse = sp.csr_matrix(Aeq_res) | ||
beq = np.array(beq_res) | ||
|
||
b_res = [] | ||
A_res = np.empty((0, n), float) | ||
|
||
update_model_constraints_and_bounds(model_iter, Aeq_sparse, beq, A_sparse, [val], lb, ub) | ||
|
||
|
||
for i in indices: | ||
objective_function = A[i] | ||
|
||
redundant_facet_right = True | ||
redundant_facet_left = True | ||
|
||
objective_function_max = np.asarray( | ||
[-x for x in objective_function] | ||
) | ||
|
||
model_iter = solve_lp_with_different_objectives( | ||
model_iter.copy(), objective_function_max | ||
) | ||
|
||
|
||
status = model_iter.status | ||
if status == GRB.OPTIMAL: | ||
max_objective = -model_iter.objVal | ||
else: | ||
max_objective = ub[i] | ||
|
||
if not facet_right_removed[0, i]: | ||
ub_iter = ub.copy() | ||
ub_iter[i] = ub_iter[i] + 1 | ||
|
||
# Call solve_lp_with_different_objectives to solve LP | ||
model_iter = solve_lp_with_different_objectives( | ||
model_iter.copy(), objective_function | ||
) | ||
|
||
status = model_iter.status | ||
if status == GRB.OPTIMAL: | ||
max_objective2 = -model_iter.objVal | ||
if ( | ||
np.abs(max_objective2 - max_objective) | ||
> redundant_facet_tol | ||
): | ||
redundant_facet_right = False | ||
else: | ||
removed += 1 | ||
facet_right_removed[0, i] = True | ||
|
||
model_iter.reset() | ||
x = model_iter.getVars() | ||
for j in range(n): | ||
x[j].LB = lb[j] | ||
x[j].UB = ub[j] | ||
x[j].obj = objective_function[j] | ||
|
||
model_iter.optimize() | ||
|
||
status = model_iter.status | ||
if status == GRB.OPTIMAL: | ||
min_objective = model_iter.objVal | ||
else: | ||
min_objective = lb[i] | ||
|
||
if not facet_left_removed[0, i]: | ||
lb_iter = lb.copy() | ||
lb_iter[i] = lb_iter[i] - 1 | ||
|
||
# Call solve_lp_with_different_objectives to solve LP | ||
model_iter = solve_lp_with_different_objectives( | ||
model_iter.copy(), objective_function | ||
) | ||
|
||
|
||
status = model_iter.status | ||
if status == GRB.OPTIMAL: | ||
min_objective2 = model_iter.objVal | ||
if ( | ||
np.abs(min_objective2 - min_objective) | ||
> redundant_facet_tol | ||
): | ||
redundant_facet_left = False | ||
else: | ||
removed += 1 | ||
facet_left_removed[0, i] = True | ||
|
||
if (not redundant_facet_left) or (not redundant_facet_right): | ||
width = abs(max_objective - min_objective) | ||
|
||
if width < redundant_facet_tol: | ||
offset += 1 | ||
Aeq_res = np.vstack( | ||
( | ||
Aeq_res, | ||
A[ | ||
i, | ||
], | ||
) | ||
) | ||
beq_res = np.append( | ||
beq_res, min(max_objective, min_objective) | ||
) | ||
ub[i] = sys.float_info.max | ||
lb[i] = -sys.float_info.max | ||
else: | ||
indices_iter.append(i) | ||
|
||
if not redundant_facet_left: | ||
A_res = np.append( | ||
A_res, | ||
np.array( | ||
[ | ||
A[ | ||
n + i, | ||
] | ||
] | ||
), | ||
axis=0, | ||
) | ||
b_res.append(b[n + i]) | ||
else: | ||
lb[i] = -sys.float_info.max | ||
|
||
if not redundant_facet_right: | ||
A_res = np.append( | ||
A_res, | ||
np.array( | ||
[ | ||
A[ | ||
i, | ||
] | ||
] | ||
), | ||
axis=0, | ||
) | ||
b_res.append(b[i]) | ||
else: | ||
ub[i] = sys.float_info.max | ||
else: | ||
ub[i] = sys.float_info.max | ||
lb[i] = -sys.float_info.max | ||
|
||
b_res = np.asarray(b_res) | ||
A_res = np.asarray(A_res, dtype="float") | ||
A_res = np.ascontiguousarray(A_res, dtype="float") | ||
|
||
return A_res, b_res, Aeq_res, beq_res | ||
|
||
except gp.GurobiError as e: | ||
print("Error code " + str(e.errno) + ": " + str(e)) | ||
except AttributeError: | ||
print("Gurobi solver failed.") | ||
|
||
|