Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix bounds_of_nested_lanes #8039

Merged
merged 8 commits into from
Jan 26, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
140 changes: 76 additions & 64 deletions src/VectorizeLoops.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -29,121 +29,146 @@ Expr get_lane(const Expr &e, int l) {
return Shuffle::make_slice(e, l, 0, 1);
}

/** Find the exact max and min lanes of a vector expression. Not
* conservative like bounds_of_expr, but uses similar rules for some
* common node types where it can be exact. If e is a nested vector,
* the result will be the bounds of the vectors in each lane. */
Interval bounds_of_nested_lanes(const Expr &e) {
/** A helper like .as<Broadcast>(), but unwraps arbitrarily many layers of
* nested broadcasts. Guaranteed to return either a broadcast of a scalar or
* nullptr. */
const Broadcast *as_scalar_broadcast(const Expr &e) {
const Broadcast *b = e.as<Broadcast>();
if (b && b->value.type().is_scalar()) {
return b;
} else if (b) {
return as_scalar_broadcast(b->value);
} else {
return nullptr;
}
};

/** Find the exact scalar max and min lanes of a vector expression. Not
* conservative like bounds_of_expr, but uses similar rules for some common node
* types where it can be exact. Always returns a scalar, even in the case of
* nested vectorization. */
Interval bounds_of_lanes(const Expr &e) {
if (e.type().is_scalar()) {
return {e, e};
}

if (const Add *add = e.as<Add>()) {
if (const Broadcast *b = add->b.as<Broadcast>()) {
Interval ia = bounds_of_nested_lanes(add->a);
if (const Broadcast *b = as_scalar_broadcast(add->b)) {
Interval ia = bounds_of_lanes(add->a);
return {ia.min + b->value, ia.max + b->value};
} else if (const Broadcast *b = add->a.as<Broadcast>()) {
Interval ia = bounds_of_nested_lanes(add->b);
} else if (const Broadcast *b = as_scalar_broadcast(add->a)) {
Interval ia = bounds_of_lanes(add->b);
return {b->value + ia.min, b->value + ia.max};
}
} else if (const Sub *sub = e.as<Sub>()) {
if (const Broadcast *b = sub->b.as<Broadcast>()) {
Interval ia = bounds_of_nested_lanes(sub->a);
if (const Broadcast *b = as_scalar_broadcast(sub->b)) {
Interval ia = bounds_of_lanes(sub->a);
return {ia.min - b->value, ia.max - b->value};
} else if (const Broadcast *b = sub->a.as<Broadcast>()) {
Interval ia = bounds_of_nested_lanes(sub->b);
return {b->value - ia.max, b->value - ia.max};
} else if (const Broadcast *b = as_scalar_broadcast(sub->a)) {
Interval ia = bounds_of_lanes(sub->b);
return {b->value - ia.max, b->value - ia.min};
}
} else if (const Mul *mul = e.as<Mul>()) {
if (const Broadcast *b = mul->b.as<Broadcast>()) {
if (const Broadcast *b = as_scalar_broadcast(mul->b)) {
if (is_positive_const(b->value)) {
Interval ia = bounds_of_nested_lanes(mul->a);
Interval ia = bounds_of_lanes(mul->a);
return {ia.min * b->value, ia.max * b->value};
} else if (is_negative_const(b->value)) {
Interval ia = bounds_of_nested_lanes(mul->a);
Interval ia = bounds_of_lanes(mul->a);
return {ia.max * b->value, ia.min * b->value};
}
} else if (const Broadcast *b = mul->a.as<Broadcast>()) {
} else if (const Broadcast *b = as_scalar_broadcast(mul->a)) {
if (is_positive_const(b->value)) {
Interval ia = bounds_of_nested_lanes(mul->b);
Interval ia = bounds_of_lanes(mul->b);
return {b->value * ia.min, b->value * ia.max};
} else if (is_negative_const(b->value)) {
Interval ia = bounds_of_nested_lanes(mul->b);
Interval ia = bounds_of_lanes(mul->b);
return {b->value * ia.max, b->value * ia.min};
}
}
} else if (const Div *div = e.as<Div>()) {
if (const Broadcast *b = div->b.as<Broadcast>()) {
if (const Broadcast *b = as_scalar_broadcast(div->b)) {
if (is_positive_const(b->value)) {
Interval ia = bounds_of_nested_lanes(div->a);
Interval ia = bounds_of_lanes(div->a);
return {ia.min / b->value, ia.max / b->value};
} else if (is_negative_const(b->value)) {
Interval ia = bounds_of_nested_lanes(div->a);
Interval ia = bounds_of_lanes(div->a);
return {ia.max / b->value, ia.min / b->value};
}
}
} else if (const And *and_ = e.as<And>()) {
if (const Broadcast *b = and_->b.as<Broadcast>()) {
Interval ia = bounds_of_nested_lanes(and_->a);
if (const Broadcast *b = as_scalar_broadcast(and_->b)) {
Interval ia = bounds_of_lanes(and_->a);
return {ia.min && b->value, ia.max && b->value};
} else if (const Broadcast *b = and_->a.as<Broadcast>()) {
Interval ia = bounds_of_nested_lanes(and_->b);
} else if (const Broadcast *b = as_scalar_broadcast(and_->a)) {
Interval ia = bounds_of_lanes(and_->b);
return {ia.min && b->value, ia.max && b->value};
}
} else if (const Or *or_ = e.as<Or>()) {
if (const Broadcast *b = or_->b.as<Broadcast>()) {
Interval ia = bounds_of_nested_lanes(or_->a);
if (const Broadcast *b = as_scalar_broadcast(or_->b)) {
Interval ia = bounds_of_lanes(or_->a);
return {ia.min && b->value, ia.max && b->value};
} else if (const Broadcast *b = or_->a.as<Broadcast>()) {
Interval ia = bounds_of_nested_lanes(or_->b);
} else if (const Broadcast *b = as_scalar_broadcast(or_->a)) {
Interval ia = bounds_of_lanes(or_->b);
return {ia.min && b->value, ia.max && b->value};
}
} else if (const Min *min = e.as<Min>()) {
if (const Broadcast *b = min->b.as<Broadcast>()) {
Interval ia = bounds_of_nested_lanes(min->a);
if (const Broadcast *b = as_scalar_broadcast(min->b)) {
Interval ia = bounds_of_lanes(min->a);
// ia and b->value have both had one nesting layer of vectorization
// peeled off, but that doesn't make them the same type.
return {Min::make(ia.min, b->value), Min::make(ia.max, b->value)};
} else if (const Broadcast *b = min->a.as<Broadcast>()) {
Interval ia = bounds_of_nested_lanes(min->b);
} else if (const Broadcast *b = as_scalar_broadcast(min->a)) {
Interval ia = bounds_of_lanes(min->b);
return {Min::make(ia.min, b->value), Min::make(ia.max, b->value)};
}
} else if (const Max *max = e.as<Max>()) {
if (const Broadcast *b = max->b.as<Broadcast>()) {
Interval ia = bounds_of_nested_lanes(max->a);
if (const Broadcast *b = as_scalar_broadcast(max->b)) {
Interval ia = bounds_of_lanes(max->a);
return {Max::make(ia.min, b->value), Max::make(ia.max, b->value)};
} else if (const Broadcast *b = max->a.as<Broadcast>()) {
Interval ia = bounds_of_nested_lanes(max->b);
} else if (const Broadcast *b = as_scalar_broadcast(max->a)) {
Interval ia = bounds_of_lanes(max->b);
return {Max::make(ia.min, b->value), Max::make(ia.max, b->value)};
}
} else if (const Not *not_ = e.as<Not>()) {
Interval ia = bounds_of_nested_lanes(not_->a);
Interval ia = bounds_of_lanes(not_->a);
return {!ia.max, !ia.min};
} else if (const Ramp *r = e.as<Ramp>()) {
Expr last_lane_idx = make_const(r->base.type(), r->lanes - 1);
if (is_positive_const(r->stride)) {
return {r->base, r->base + last_lane_idx * r->stride};
} else if (is_negative_const(r->stride)) {
return {r->base + last_lane_idx * r->stride, r->base};
Interval ib = bounds_of_lanes(r->base);
const Broadcast *b = as_scalar_broadcast(r->stride);
Expr stride = b ? b->value : r->stride;
if (stride.type().is_scalar()) {
if (is_positive_const(stride)) {
return {ib.min, ib.max + last_lane_idx * stride};
} else if (is_negative_const(stride)) {
return {ib.min + last_lane_idx * stride, ib.max};
}
}
} else if (const LE *le = e.as<LE>()) {
// The least true this can be is if we maximize the LHS and minimize the RHS.
// The most true this can be is if we minimize the LHS and maximize the RHS.
// This is only exact if one of the two sides is a Broadcast.
Interval ia = bounds_of_nested_lanes(le->a);
Interval ib = bounds_of_nested_lanes(le->b);
Interval ia = bounds_of_lanes(le->a);
Interval ib = bounds_of_lanes(le->b);
if (ia.is_single_point() || ib.is_single_point()) {
return {ia.max <= ib.min, ia.min <= ib.max};
}
} else if (const LT *lt = e.as<LT>()) {
// The least true this can be is if we maximize the LHS and minimize the RHS.
// The most true this can be is if we minimize the LHS and maximize the RHS.
// This is only exact if one of the two sides is a Broadcast.
Interval ia = bounds_of_nested_lanes(lt->a);
Interval ib = bounds_of_nested_lanes(lt->b);
Interval ia = bounds_of_lanes(lt->a);
Interval ib = bounds_of_lanes(lt->b);
if (ia.is_single_point() || ib.is_single_point()) {
return {ia.max < ib.min, ia.min < ib.max};
}

} else if (const Broadcast *b = e.as<Broadcast>()) {
} else if (const Broadcast *b = as_scalar_broadcast(e)) {
return {b->value, b->value};
} else if (const Let *let = e.as<Let>()) {
Interval ia = bounds_of_nested_lanes(let->value);
Interval ib = bounds_of_nested_lanes(let->body);
Interval ia = bounds_of_lanes(let->value);
Interval ib = bounds_of_lanes(let->body);
if (expr_uses_var(ib.min, let->name)) {
ib.min = Let::make(let->name, let->value, ib.min);
}
Expand All @@ -166,19 +191,6 @@ Interval bounds_of_nested_lanes(const Expr &e) {
}
};

/** Similar to bounds_of_nested_lanes, but it recursively reduces
* the bounds of nested vectors to scalars. */
Interval bounds_of_lanes(const Expr &e) {
Interval bounds = bounds_of_nested_lanes(e);
if (!bounds.min.type().is_scalar()) {
bounds.min = bounds_of_lanes(bounds.min).min;
}
if (!bounds.max.type().is_scalar()) {
bounds.max = bounds_of_lanes(bounds.max).max;
}
return bounds;
}

// A ramp with the lanes repeated inner_repetitions times, and then
// the whole vector repeated outer_repetitions times.
// E.g: <0 0 2 2 4 4 6 6 0 0 2 2 4 4 6 6>.
Expand Down
19 changes: 19 additions & 0 deletions test/correctness/fuzz_schedule.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -183,6 +183,25 @@ int main(int argc, char **argv) {
check_blur_output(buf, correct);
}

// https://github.com/halide/Halide/issues/8038
{
Func input("input");
Func local_sum("local_sum");
Func blurry("blurry");
Var x("x"), y("y"), yi("yi"), yo("yo"), xi("xi"), xo("xo"), yofxi("yofxi"), yofxio("yofxio"), yofxii("yofxii"), yofxiifyi("yofxiifyi"), yofxioo("yofxioo"), yofxioi("yofxioi");
input(x, y) = 2 * x + 5 * y;
RDom r(-2, 5, -2, 5, "rdom_r");
local_sum(x, y) = 0;
local_sum(x, y) += input(x + r.x, y + r.y);
blurry(x, y) = cast<int32_t>(local_sum(x, y) / 25);
local_sum.split(y, yi, yo, 2, TailStrategy::GuardWithIf).split(x, xi, xo, 5, TailStrategy::Predicate).fuse(yo, xi, yofxi).split(yofxi, yofxio, yofxii, 8, TailStrategy::ShiftInwards).fuse(yofxii, yi, yofxiifyi).split(yofxio, yofxioo, yofxioi, 5, TailStrategy::ShiftInwards).vectorize(yofxiifyi).vectorize(yofxioi);
local_sum.update(0).unscheduled();
blurry.split(x, xo, xi, 5, TailStrategy::Auto);
Pipeline p({blurry});
auto buf = p.realize({32, 32});
check_blur_output(buf, correct);
}

printf("Success!\n");
return 0;
}
Loading