Skip to content

guozishan/CS2W

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 

Repository files navigation

CS2W

IntroductionDataset AnalysisDocsHow to use CS2WData Field DescriptionCitation

introduction

Spoken texts (either manual or automatic transcriptions from automatic speech recognition (ASR)) often contain disfluencies and grammatical errors, which pose tremendous challenges to downstream tasks. Converting spoken into written language is hence desirable. Unfortunately, the availability of datasets for this is limited. To address this issue, we present CS2W, a Chinese Spoken-to-Writtenstyle conversion dataset comprising 7,237 spoken sentences extracted from transcribed conversational texts. Four types of conversion problems are covered in CS2W: disfluencies, grammatical errors, ASR transcription errors, and colloquial words.

Dataset Analysis

Overall Statistics

Train Dev Test All
#sentences 5,789 724 724 7,237
w/ 1 error 4,211 596 597 5,404
w/ 2 error 1,069 107 112 1,288
w/ 3 error 317 15 11 343
w/ 4 error 192 6 4 202
#Spans 8,022 889 881 9,792
Avg. #spans 1.386 1.228 1.217 1.353
Avg. Spans_len 2.003 1.883 2.069 2.020
#Characters 121,907 10,844 10,987 143,738
Avg. #characters 21.058 15.033 15.175 19.862
#Tokens 78,549 7,120 7,116 92,785
Avg. #tokens 13.569 9.834 9.829 12.821

Conversion Type Distribution

First Level Second Level Proportion
Disfluency R-type 64.62%
Filler words 19.09%
ASR Transcription Errors - 0.70%
Grammatical Errors Missing Words 2.92%
Redundant Words 5.22%
Incorrect Word Order 0.23%
Colloquial Words - 7.22%

Docs

Below is the documentation tree, giving you an overview of the directory structure and the purpose of each file:

+-- data 
|   +-- train.jsonl
|   +-- val.jsonl
|   +-- test.jsonl
+-- README.md

How to use CS2W

First, clone this repository using the following command:

git clone https://github.com/guozishan/CS2W.git

Then, load the data using Python's built-in json package as shown below:

import json

fin = open("path/to/CS2W/data/train.jsonl", mode="r", encoding="utf-8")

for json_line in fin:
    json_data = json.loads(json_line)
    print(json_data)

Data Field Description

Field Name Data Type Description
id Integer Unique identifier for the data
content String The source content of the text (spoken language)
disfluency_label String Label indicating the type of Disfluency conversion (1: Filler words, 2: R-type, 0: Normal)
grammatical_error_label String Label indicating the type of Grammatical Errors conversion (1: Redundant Words, 2: Missing Words, 0: Normal)
colloquial_word_label String Label indicating the type of Colloquial Words conversion (1: Colloquial Words, 0: Normal)
asr_error_label String Label indicating the type of ASR Transcription Errors conversion (1: ASR Transcription Errors, 0: Normal)
disfluency_num Integer The count of Disfluency type conversions in the text
grammatical_error_num Integer The count of Grammatical Errors type conversions in the text
colloquial_word_num Integer The count of Colloquial Words type conversions in the text
asr_error_num Integer The count of ASR Transcription Errors type conversions in the text
ref String The target content of the text (written language)
{
    "id": 3,
    "content": "这个事情也是值得大家应,值得大家注意的",
    "disfluency_label": "0000002222200000000",
    "grammatical_error_label": "0000000000000000000",
    "colloquial_word_label": "0000000000000000000",
    "asr_error_label": "0000000000000000000",
    "disfluency_num": 1,
    "grammatical_error_num": 0,
    "colloquial_word_num": 0,
    "asr_error_num": 0,
    "ref": "这个事情也是值得大家注意的"
}

Data License

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) license. (License URL: https://creativecommons.org/licenses/by-sa/4.0/)

Citation

inproceedings{guo2023cs2w,
  title={CS2W: A Chinese Spoken-to-Written Style Conversion Dataset with Multiple Conversion Types},
  author={Guo, Zishan and Yu, Linhao and Xu, Minghui and Jin, Renren and Xiong, Deyi},
  booktitle={Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing},
  pages={3962--3979},
  year={2023}
}

About

CS2W Datasets

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published