You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
You are playing the following Flip Game with your friend: Given a string that contains only these two characters: + and -, you and your friend take turns to flip two consecutive "++" into "--". The game ends when a person can no longer make a move and therefore the other person will be the winner.
Write a function to determine if the starting player can guarantee a win.
Example:
Input: s = "++++"
Output: true
Explanation: The starting player can guarantee a win by flipping the middle "++" to become "+--+".
Follow up:
Derive your algorithm's runtime complexity.
这道题是之前那道 Flip Game 的拓展,让我们判断先手的玩家是否能赢,可以穷举所有的情况,用回溯法来解题,思路跟上面那题类似,也是从第二个字母开始遍历整个字符串,如果当前字母和之前那个字母都是+,那么递归调用将这两个位置变为--的字符串,如果返回 false,说明当前玩家可以赢,结束循环返回 false。这里同时贴上热心网友 iffalse 的解释,这道题不是问 “1p是否会怎么选都会赢”,而是 “如果1p每次都选特别的两个+,最终他会不会赢”。所以 canWin 这个函数的意思是 “在当前这种状态下,至少有一种选法,能够让他赢”。而 (!canWin) 的意思就变成了 “在当前这种状态下,无论怎么选,都不能赢”。所以 1p 要看的是,是否存在这样一种情况,无论 2p 怎么选,都不会赢。所以只要有一个 (!canWin),1p 就可以确定他会赢。这道题从博弈论的角度会更好理解。每个 player 都想让自己赢,所以每轮他们不会随机选+。每一轮的 player 会选能够让对手输的+。如果无论如何都选不到让对手输的+,那么只能是当前的 player 输了,参见代码如下:
解法一:
class Solution {
public:
bool canWin(string s) {
for (int i = 1; i < s.size(); ++i) {
if (s[i] == '+' && s[i - 1] == '+' && !canWin(s.substr(0, i - 1) + "--" + s.substr(i + 1))) {
return true;
}
}
return false;
}
};
You are playing the following Flip Game with your friend: Given a string that contains only these two characters:
+
and-
, you and your friend take turns to flip two consecutive"++"
into"--"
. The game ends when a person can no longer make a move and therefore the other person will be the winner.Write a function to determine if the starting player can guarantee a win.
Example:
Follow up:
Derive your algorithm's runtime complexity.
这道题是之前那道 Flip Game 的拓展,让我们判断先手的玩家是否能赢,可以穷举所有的情况,用回溯法来解题,思路跟上面那题类似,也是从第二个字母开始遍历整个字符串,如果当前字母和之前那个字母都是+,那么递归调用将这两个位置变为--的字符串,如果返回 false,说明当前玩家可以赢,结束循环返回 false。这里同时贴上热心网友 iffalse 的解释,这道题不是问 “1p是否会怎么选都会赢”,而是 “如果1p每次都选特别的两个+,最终他会不会赢”。所以 canWin 这个函数的意思是 “在当前这种状态下,至少有一种选法,能够让他赢”。而 (!canWin) 的意思就变成了 “在当前这种状态下,无论怎么选,都不能赢”。所以 1p 要看的是,是否存在这样一种情况,无论 2p 怎么选,都不会赢。所以只要有一个 (!canWin),1p 就可以确定他会赢。这道题从博弈论的角度会更好理解。每个 player 都想让自己赢,所以每轮他们不会随机选+。每一轮的 player 会选能够让对手输的+。如果无论如何都选不到让对手输的+,那么只能是当前的 player 输了,参见代码如下:
解法一:
第二种解法和第一种解法一样,只是用 find 函数来查找 ++ 的位置,然后把位置赋值给i,然后还是递归调用 canWin 函数,参见代码如下:
解法二:
Github 同步地址:
#294
类似题目:
Nim Game
Flip Game
Guess Number Higher or Lower II
Can I Win
参考资料:
https://leetcode.com/problems/flip-game-ii/
https://leetcode.com/problems/flip-game-ii/discuss/74033/4-line-Java-Solution
https://leetcode.com/problems/flip-game-ii/discuss/74010/Short-Java-and-Ruby
https://leetcode.com/problems/flip-game-ii/discuss/73962/Share-my-Java-backtracking-solution
LeetCode All in One 题目讲解汇总(持续更新中...)
The text was updated successfully, but these errors were encountered: