You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Given a list of words, list of single letters (might be repeating) and score of every character.
Return the maximum score of any valid set of words formed by using the given letters (words[i] cannot be used two or more times).
It is not necessary to use all characters in letters and each letter can only be used once. Score of letters 'a', 'b', 'c', ... ,'z' is given by score[0], score[1], ... , score[25] respectively.
Example 1:
Input: words = ["dog","cat","dad","good"], letters = ["a","a","c","d","d","d","g","o","o"], score = [1,0,9,5,0,0,3,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0]
Output: 23
Explanation:
Score a=1, c=9, d=5, g=3, o=2
Given letters, we can form the words "dad" (5+1+5) and "good" (3+2+2+5) with a score of 23.
Words "dad" and "dog" only get a score of 21.
Example 2:
Input: words = ["xxxz","ax","bx","cx"], letters = ["z","a","b","c","x","x","x"], score = [4,4,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,10]
Output: 27
Explanation:
Score a=4, b=4, c=4, x=5, z=10
Given letters, we can form the words "ax" (4+5), "bx" (4+5) and "cx" (4+5) with a score of 27.
Word "xxxz" only get a score of 25.
Example 3:
Input: words = ["leetcode"], letters = ["l","e","t","c","o","d"], score = [0,0,1,1,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,0,0,0,0]
Output: 0
Explanation:
Letter "e" can only be used once.
Constraints:
1 <= words.length <= 14
1 <= words[i].length <= 15
1 <= letters.length <= 100
letters[i].length == 1
score.length == 26
0 <= score[i] <= 10
words[i], letters[i] contains only lower case English letters.
跟之前那道 Subsets 有点类似,不过更加复杂一些。这里使用回溯 Backtracking 的方法来做,递归函数需要4个参数,原单词数组 words,统计字母个数数组 cnts,字母分数数组 score,还有当前遍历的位置 idx。从 idx 的位置开始往后遍历,对于当前遍历到的单词,遍历其每一个字母,并且将 cnt 对应的字母个数减1,当小于0了的话,说明此时无法组成当前单词,标记 isValid 为 false,同时将当前单词的总得分存入变量 sum 中。处理完当前单词后,若 isValid 为 true,说明字母是够用的,则对下一个位置的单词调用递归,将返回值加到 sum 中,这样 sum 就是合法的情况,用其来更新结果 res。之后要记得恢复状态,将当前单词的字母统计个数加回来,参见代码如下:
解法一:
class Solution {
public:
int maxScoreWords(vector<string>& words, vector<char>& letters, vector<int>& score) {
vector<int> cnt(26);
for (char c : letters) ++cnt[c - 'a'];
return dfs(words, cnt, score, 0);
}
int dfs(vector<string>& words, vector<int>& cnt, vector<int>& score, int idx) {
int res = 0;
for (int i = idx; i < words.size(); ++i) {
int sum = 0;
bool isValid = true;
for (char c : words[i]) {
if (--cnt[c - 'a'] < 0) {
isValid = false;
}
sum += score[c - 'a'];
}
if (isValid) {
sum += dfs(words, cnt, score, i + 1);
res = max(res, sum);
}
for (char c : words[i]) {
++cnt[c - 'a'];
}
}
return res;
}
};
我们还可以写的更简洁一些,在递归函数中少用一个 for 循环,开始直接判断当前 idx 是否大于等于 words 的长度,是的话直接返回0。否则先跳过当单词,直接对下个位置调用递归,得到返回值 skipGain,然后再来计算当前的得分 gain。这里为了避免回溯的恢复状态步骤,直接新建了一个字母统计个数数组 cnt1,然后就是遍历当前单词的字母,减少对应字母的个数,若小于0了,isValid 标记为 false,将字母分数加到 gain 中。若最终 isValid 为 true,则分数为 gain 加上对下一个位置调用递归的返回的值(注意这次调用和开头得到的 skipGain 是不同,因为传入的 cnt 数组不同,这次调用已经减去当前单词的字母个数),若 isValid 为 false,则分数为0。最终返回的分数还要跟 skipGain 相比,取较大值返回即可,参见代码如下:
解法二:
class Solution {
public:
int maxScoreWords(vector<string>& words, vector<char>& letters, vector<int>& score) {
vector<int> cnt(26);
for (char c : letters) ++cnt[c - 'a'];
return dfs(words, cnt, score, 0);
}
int dfs(vector<string>& words, vector<int>& cnt, vector<int>& score, int idx) {
if (idx >= words.size()) return 0;
int skipGain = dfs(words, cnt, score, idx + 1), gain = 0;
bool isValid = true;
vector<int> cnt1 = cnt;
for (char c : words[idx]) {
if (--cnt1[c - 'a'] < 0) isValid = false;
gain += score[c - 'a'];
}
return max(skipGain, isValid ? gain + dfs(words, cnt1, score, idx + 1) : 0);
}
};
class Solution {
public:
int maxScoreWords(vector<string>& words, vector<char>& letters, vector<int>& score) {
int res = 0, n = words.size(), m = 1 << n;
vector<int> count(26);
for (char c : letters) ++count[c - 'a'];
for (int mask = 0; mask < m; ++mask) {
int sum = 0, isValid = 1;
vector<int> cnt = count;
for (int i = n - 1; i >= 0; --i) {
if ((mask >> i) & 1) {
for (char c : words[i]) {
if (--cnt[c - 'a'] < 0) {
isValid = 0;
break;
}
sum += score[c - 'a'];
}
}
if (!isValid) break;
}
if (isValid) res = max(res, sum);
}
return res;
}
};
Given a list of
words
, list of singleletters
(might be repeating) andscore
of every character.Return the maximum score of any valid set of words formed by using the given letters (
words[i]
cannot be used two or more times).It is not necessary to use all characters in
letters
and each letter can only be used once. Score of letters'a'
,'b'
,'c'
, ... ,'z'
is given byscore[0]
,score[1]
, ... ,score[25]
respectively.Example 1:
Example 2:
Example 3:
Constraints:
1 <= words.length <= 14
1 <= words[i].length <= 15
1 <= letters.length <= 100
letters[i].length == 1
score.length == 26
0 <= score[i] <= 10
words[i]
,letters[i]
contains only lower case English letters.这道题说是给了一个单词数组 words,还有个字母数组 letters,以及每个字母的分数数组 score,现在让用 letters 中的字母去组成 words 中的单词,每个字母只能用一次,不必使用所有的字母,问可以得到的最大分数是多少,每个拼出的单词的分数是其所有的字母的分数之和。题目中限定了只有小写字母,即 26 个,所以 score 数组的大小也是 26 个,可以直接根据字母取其分数值。对于给定的字母数组 letters,里面可能会存在大量的重复字母,为了便于使用,需要统计每个字母的个数,可以用一个大小为 26 的 cnt 数组来统计。由于不知道给定的字母能拼出多少个单词,但最终能拼出的单词集一定是给定单词集的子集,需要注意的是也不是拼出的单词越多越好,而是需要最终的得分最大,所以只能尽可能的去计算每一种情况,从而找到得分最大的情况。
跟之前那道 Subsets 有点类似,不过更加复杂一些。这里使用回溯 Backtracking 的方法来做,递归函数需要4个参数,原单词数组 words,统计字母个数数组 cnts,字母分数数组 score,还有当前遍历的位置 idx。从 idx 的位置开始往后遍历,对于当前遍历到的单词,遍历其每一个字母,并且将 cnt 对应的字母个数减1,当小于0了的话,说明此时无法组成当前单词,标记 isValid 为 false,同时将当前单词的总得分存入变量 sum 中。处理完当前单词后,若 isValid 为 true,说明字母是够用的,则对下一个位置的单词调用递归,将返回值加到 sum 中,这样 sum 就是合法的情况,用其来更新结果 res。之后要记得恢复状态,将当前单词的字母统计个数加回来,参见代码如下:
解法一:
我们还可以写的更简洁一些,在递归函数中少用一个 for 循环,开始直接判断当前 idx 是否大于等于 words 的长度,是的话直接返回0。否则先跳过当单词,直接对下个位置调用递归,得到返回值 skipGain,然后再来计算当前的得分 gain。这里为了避免回溯的恢复状态步骤,直接新建了一个字母统计个数数组 cnt1,然后就是遍历当前单词的字母,减少对应字母的个数,若小于0了,isValid 标记为 false,将字母分数加到 gain 中。若最终 isValid 为 true,则分数为 gain 加上对下一个位置调用递归的返回的值(注意这次调用和开头得到的 skipGain 是不同,因为传入的 cnt 数组不同,这次调用已经减去当前单词的字母个数),若 isValid 为 false,则分数为0。最终返回的分数还要跟 skipGain 相比,取较大值返回即可,参见代码如下:
解法二:
最后来看一种迭代的解法,这里是遍历 words 的所有的子集,用了 bitmask 的方法,若 words 里有n个单词,那么其子集的个数是
2^n
,对应的正好是从 0 到2^n-1
的二进制表示,0位表示不用对应位单词,1表示选用当前单词。比如 words 是 ["a", "b", "c"] 的话,那么 101 就表示子集是 ["a", "c"],这样就可以遍历所有的子集了。开始还是先统计 letters 中的字母个数,放入到 count 中,然后 mask 从0遍历到2^n-1
,对于每个子集,复制一个 count 数组,然后遍历n个位置,从0遍历到 n-1,或者从 n-1 遍历到0都可以,为的是找到二进制数对应的1位,通过(mask >> i) & 1
来判断,遍历需要拼的单词的字母,减去对应的字母个数,若小于0了,标记 isValid,并 break 掉。每遍历完子集中的一个单词,都检查一下 isValid,若为0就 break 掉循环,最终该子集中的单词遍历完了之后,若 isValid 为1,用 sum 来更新结果 res 即可,参见代码如下:解法三:
Github 同步地址:
#1255
类似题目:
Subsets
参考资料:
https://leetcode.com/problems/maximum-score-words-formed-by-letters/
https://leetcode.com/problems/maximum-score-words-formed-by-letters/discuss/426045/C%2B%2B-DFS-(optional-memo)
https://leetcode.com/problems/maximum-score-words-formed-by-letters/discuss/505887/C%2B%2B-Memory-efficient-simple-bitmasking-solution
https://leetcode.com/problems/maximum-score-words-formed-by-letters/discuss/425129/java-backtrack-similar-to-78.-Subsets-1ms-beats-100
LeetCode All in One 题目讲解汇总(持续更新中...)
喜欢请点赞,疼爱请打赏❤️~.~
微信打赏
|
Venmo 打赏
---|---
The text was updated successfully, but these errors were encountered: