This repository has been archived by the owner on Sep 5, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 44
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
automl beta [(#1575)](GoogleCloudPlatform/python-docs-samples#1575)
* automl initial commit * lint * fix import groupings * add requirements.txt * address review comments
- Loading branch information
1 parent
ffa5084
commit c131d90
Showing
8 changed files
with
958 additions
and
0 deletions.
There are no files selected for viewing
297 changes: 297 additions & 0 deletions
297
samples/snippets/automl/automl_natural_language_dataset.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,297 @@ | ||
#!/usr/bin/env python | ||
|
||
# Copyright 2018 Google LLC | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
"""This application demonstrates how to perform basic operations on Dataset | ||
with the Google AutoML Natural Language API. | ||
For more information, see the tutorial page at | ||
https://cloud.google.com/natural-language/automl/docs/ | ||
""" | ||
|
||
import argparse | ||
import os | ||
|
||
|
||
def create_dataset(project_id, compute_region, dataset_name, multilabel=False): | ||
"""Create a dataset.""" | ||
# [START automl_natural_language_create_dataset] | ||
# TODO(developer): Uncomment and set the following variables | ||
# project_id = 'PROJECT_ID_HERE' | ||
# compute_region = 'COMPUTE_REGION_HERE' | ||
# dataset_name = 'DATASET_NAME_HERE' | ||
# multilabel = True for multilabel or False for multiclass | ||
|
||
from google.cloud import automl_v1beta1 as automl | ||
|
||
client = automl.AutoMlClient() | ||
|
||
# A resource that represents Google Cloud Platform location. | ||
project_location = client.location_path(project_id, compute_region) | ||
|
||
# Classification type is assigned based on multilabel value. | ||
classification_type = "MULTICLASS" | ||
if multilabel: | ||
classification_type = "MULTILABEL" | ||
|
||
# Specify the text classification type for the dataset. | ||
dataset_metadata = {"classification_type": classification_type} | ||
|
||
# Set dataset name and metadata. | ||
my_dataset = { | ||
"display_name": dataset_name, | ||
"text_classification_dataset_metadata": dataset_metadata, | ||
} | ||
|
||
# Create a dataset with the dataset metadata in the region. | ||
dataset = client.create_dataset(project_location, my_dataset) | ||
|
||
# Display the dataset information. | ||
print("Dataset name: {}".format(dataset.name)) | ||
print("Dataset id: {}".format(dataset.name.split("/")[-1])) | ||
print("Dataset display name: {}".format(dataset.display_name)) | ||
print("Text classification dataset metadata:") | ||
print("\t{}".format(dataset.text_classification_dataset_metadata)) | ||
print("Dataset example count: {}".format(dataset.example_count)) | ||
print("Dataset create time:") | ||
print("\tseconds: {}".format(dataset.create_time.seconds)) | ||
print("\tnanos: {}".format(dataset.create_time.nanos)) | ||
|
||
# [END automl_natural_language_create_dataset] | ||
|
||
|
||
def list_datasets(project_id, compute_region, filter_): | ||
"""List all datasets.""" | ||
# [START automl_natural_language_list_datasets] | ||
# TODO(developer): Uncomment and set the following variables | ||
# project_id = 'PROJECT_ID_HERE' | ||
# compute_region = 'COMPUTE_REGION_HERE' | ||
# filter_ = 'filter expression here' | ||
|
||
from google.cloud import automl_v1beta1 as automl | ||
|
||
client = automl.AutoMlClient() | ||
|
||
# A resource that represents Google Cloud Platform location. | ||
project_location = client.location_path(project_id, compute_region) | ||
|
||
# List all the datasets available in the region by applying filter. | ||
response = client.list_datasets(project_location, filter_) | ||
|
||
print("List of datasets:") | ||
for dataset in response: | ||
# Display the dataset information. | ||
print("Dataset name: {}".format(dataset.name)) | ||
print("Dataset id: {}".format(dataset.name.split("/")[-1])) | ||
print("Dataset display name: {}".format(dataset.display_name)) | ||
print("Text classification dataset metadata:") | ||
print("\t{}".format(dataset.text_classification_dataset_metadata)) | ||
print("Dataset example count: {}".format(dataset.example_count)) | ||
print("Dataset create time:") | ||
print("\tseconds: {}".format(dataset.create_time.seconds)) | ||
print("\tnanos: {}".format(dataset.create_time.nanos)) | ||
|
||
# [END automl_natural_language_list_datasets] | ||
|
||
|
||
def get_dataset(project_id, compute_region, dataset_id): | ||
"""Get the dataset.""" | ||
# [START automl_natural_language_get_dataset] | ||
# TODO(developer): Uncomment and set the following variables | ||
# project_id = 'PROJECT_ID_HERE' | ||
# compute_region = 'COMPUTE_REGION_HERE' | ||
# dataset_id = 'DATASET_ID_HERE' | ||
|
||
from google.cloud import automl_v1beta1 as automl | ||
|
||
client = automl.AutoMlClient() | ||
|
||
# Get the full path of the dataset | ||
dataset_full_id = client.dataset_path( | ||
project_id, compute_region, dataset_id | ||
) | ||
|
||
# Get complete detail of the dataset. | ||
dataset = client.get_dataset(dataset_full_id) | ||
|
||
# Display the dataset information. | ||
print("Dataset name: {}".format(dataset.name)) | ||
print("Dataset id: {}".format(dataset.name.split("/")[-1])) | ||
print("Dataset display name: {}".format(dataset.display_name)) | ||
print("Text classification dataset metadata:") | ||
print("\t{}".format(dataset.text_classification_dataset_metadata)) | ||
print("Dataset example count: {}".format(dataset.example_count)) | ||
print("Dataset create time:") | ||
print("\tseconds: {}".format(dataset.create_time.seconds)) | ||
print("\tnanos: {}".format(dataset.create_time.nanos)) | ||
|
||
# [END automl_natural_language_get_dataset] | ||
|
||
|
||
def import_data(project_id, compute_region, dataset_id, path): | ||
"""Import labelled items.""" | ||
# [START automl_natural_language_import_data] | ||
# TODO(developer): Uncomment and set the following variables | ||
# project_id = 'PROJECT_ID_HERE' | ||
# compute_region = 'COMPUTE_REGION_HERE' | ||
# dataset_id = 'DATASET_ID_HERE' | ||
# path = 'gs://path/to/file.csv' | ||
|
||
from google.cloud import automl_v1beta1 as automl | ||
|
||
client = automl.AutoMlClient() | ||
|
||
# Get the full path of the dataset. | ||
dataset_full_id = client.dataset_path( | ||
project_id, compute_region, dataset_id | ||
) | ||
|
||
# Get the multiple Google Cloud Storage URIs. | ||
input_uris = path.split(",") | ||
input_config = {"gcs_source": {"input_uris": input_uris}} | ||
|
||
# Import the dataset from the input URI. | ||
response = client.import_data(dataset_full_id, input_config) | ||
|
||
print("Processing import...") | ||
# synchronous check of operation status. | ||
print("Data imported. {}".format(response.result())) | ||
|
||
# [END automl_natural_language_import_data] | ||
|
||
|
||
def export_data(project_id, compute_region, dataset_id, output_uri): | ||
"""Export a dataset to a Google Cloud Storage bucket.""" | ||
# [START automl_natural_language_export_data] | ||
# TODO(developer): Uncomment and set the following variables | ||
# project_id = 'PROJECT_ID_HERE' | ||
# compute_region = 'COMPUTE_REGION_HERE' | ||
# dataset_id = 'DATASET_ID_HERE' | ||
# output_uri: 'gs://location/to/export/data' | ||
|
||
from google.cloud import automl_v1beta1 as automl | ||
|
||
client = automl.AutoMlClient() | ||
|
||
# Get the full path of the dataset. | ||
dataset_full_id = client.dataset_path( | ||
project_id, compute_region, dataset_id | ||
) | ||
|
||
# Set the output URI | ||
output_config = {"gcs_destination": {"output_uri_prefix": output_uri}} | ||
|
||
# Export the data to the output URI. | ||
response = client.export_data(dataset_full_id, output_config) | ||
|
||
print("Processing export...") | ||
# synchronous check of operation status. | ||
print("Data exported. {}".format(response.result())) | ||
|
||
# [END automl_natural_language_export_data] | ||
|
||
|
||
def delete_dataset(project_id, compute_region, dataset_id): | ||
"""Delete a dataset.""" | ||
# [START automl_natural_language_delete_dataset] | ||
# TODO(developer): Uncomment and set the following variables | ||
# project_id = 'PROJECT_ID_HERE' | ||
# compute_region = 'COMPUTE_REGION_HERE' | ||
# dataset_id = 'DATASET_ID_HERE' | ||
|
||
from google.cloud import automl_v1beta1 as automl | ||
|
||
client = automl.AutoMlClient() | ||
|
||
# Get the full path of the dataset. | ||
dataset_full_id = client.dataset_path( | ||
project_id, compute_region, dataset_id | ||
) | ||
|
||
# Delete a dataset. | ||
response = client.delete_dataset(dataset_full_id) | ||
|
||
# synchronous check of operation status. | ||
print("Dataset deleted. {}".format(response.result())) | ||
|
||
# [END automl_natural_language_delete_dataset] | ||
|
||
|
||
if __name__ == "__main__": | ||
parser = argparse.ArgumentParser( | ||
description=__doc__, | ||
formatter_class=argparse.RawDescriptionHelpFormatter, | ||
) | ||
subparsers = parser.add_subparsers(dest="command") | ||
|
||
create_dataset_parser = subparsers.add_parser( | ||
"create_dataset", help=create_dataset.__doc__ | ||
) | ||
create_dataset_parser.add_argument("dataset_name") | ||
create_dataset_parser.add_argument( | ||
"multilabel", nargs="?", choices=["False", "True"], default="False" | ||
) | ||
|
||
list_datasets_parser = subparsers.add_parser( | ||
"list_datasets", help=list_datasets.__doc__ | ||
) | ||
list_datasets_parser.add_argument( | ||
"filter_", nargs="?", default="text_classification_dataset_metadata:*" | ||
) | ||
|
||
get_dataset_parser = subparsers.add_parser( | ||
"get_dataset", help=get_dataset.__doc__ | ||
) | ||
get_dataset_parser.add_argument("dataset_id") | ||
|
||
import_data_parser = subparsers.add_parser( | ||
"import_data", help=import_data.__doc__ | ||
) | ||
import_data_parser.add_argument("dataset_id") | ||
import_data_parser.add_argument("path") | ||
|
||
export_data_parser = subparsers.add_parser( | ||
"export_data", help=export_data.__doc__ | ||
) | ||
export_data_parser.add_argument("dataset_id") | ||
export_data_parser.add_argument("output_uri") | ||
|
||
delete_dataset_parser = subparsers.add_parser( | ||
"delete_dataset", help=delete_dataset.__doc__ | ||
) | ||
delete_dataset_parser.add_argument("dataset_id") | ||
|
||
project_id = os.environ["PROJECT_ID"] | ||
compute_region = os.environ["REGION_NAME"] | ||
|
||
args = parser.parse_args() | ||
|
||
if args.command == "create_dataset": | ||
multilabel = True if args.multilabel == "True" else False | ||
create_dataset( | ||
project_id, compute_region, args.dataset_name, multilabel | ||
) | ||
if args.command == "list_datasets": | ||
list_datasets(project_id, compute_region, args.filter_) | ||
if args.command == "get_dataset": | ||
get_dataset(project_id, compute_region, args.dataset_id) | ||
if args.command == "import_data": | ||
import_data(project_id, compute_region, args.dataset_id, args.path) | ||
if args.command == "export_data": | ||
export_data( | ||
project_id, compute_region, args.dataset_id, args.output_uri | ||
) | ||
if args.command == "delete_dataset": | ||
delete_dataset(project_id, compute_region, args.dataset_id) |
Oops, something went wrong.