Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: Support using GeoPandas for GEOGRAPHY columns #848

Merged
merged 47 commits into from
Aug 24, 2021
Merged
Show file tree
Hide file tree
Changes from 46 commits
Commits
Show all changes
47 commits
Select commit Hold shift + click to select a range
0e3dba2
Removed unused method
Aug 2, 2021
ff6c4ff
Implemented geography_as_object argument to to_dataframe and implemen…
Aug 3, 2021
ecff6f9
blacken
Aug 3, 2021
15648af
Merge remote-tracking branch 'upstream/master' into to_geodataframe
Aug 3, 2021
766be77
Need to use different table names in tests.
Aug 3, 2021
a904504
check messages in error assertions (for geo)
Aug 3, 2021
bc985f9
added missing comma
Aug 3, 2021
fb6eafd
Added missing tests.
Aug 3, 2021
0547801
blacken
Aug 3, 2021
e0dde7c
Added tests showing delegation in some to_geodataframe implementations
Aug 3, 2021
177b099
Added a missing skip
Aug 3, 2021
86820e2
blacken
Aug 3, 2021
c298fbd
doc tweaks
Aug 4, 2021
e9cc38f
Updated dataframe_to_bq_schema to recognize geography data
Aug 4, 2021
5f866ff
Make load_from_pandas work with GeoSeries, shapely data, and binary w…
Aug 4, 2021
e23b830
Small (14% for small polygons) optimization for reading wkt data
Aug 4, 2021
950d957
blacken/lint
Aug 4, 2021
0493acf
wait for it ...
Aug 4, 2021
5d986be
geopandas needs a slightly newer (but still old) version of pandas.
Aug 5, 2021
f5e2f62
skip coverage on section of code that isn't reachable by tests
Aug 5, 2021
1084c4e
assuage pytype
Aug 5, 2021
cdb821d
blacken
Aug 5, 2021
054a857
Added geopandas doc snippit
Aug 5, 2021
0924a03
make sure coordinate system is set correctly
Aug 5, 2021
c9f8ab6
We need at least geopandas 0.9.0, which happens to be the current ver…
Aug 5, 2021
b61bebc
Set version bounds for shapely
Aug 5, 2021
edbea72
blacken
Aug 5, 2021
36e9ee3
Merge branch 'master' into to_geodataframe
Aug 5, 2021
2eed7c0
Merge branch 'master' into to_geodataframe
Aug 11, 2021
b163b4d
Merge branch 'master' into to_geodataframe
Aug 11, 2021
b6f19c9
rename CRS to _COORDINATE_REFERENCE_SYSTEM
Aug 16, 2021
459484f
Merge branch 'to_geodataframe' of github.com:jimfulton/python-bigquer…
Aug 16, 2021
3043585
Fixed intersphinx links
Aug 16, 2021
fe8ea8a
capitalize shapely
Aug 16, 2021
a81015a
merge upstream/master
Aug 17, 2021
2d3c372
blacken ...whimper
Aug 17, 2021
1a977fb
🦉 Updates from OwlBot
gcf-owl-bot[bot] Aug 17, 2021
7dd9f5e
tell owlbot about pandas and geopandas intersphinx
Aug 17, 2021
3c257d9
Explain the _to_wkb hijinks
Aug 17, 2021
c73b856
moar comments
Aug 17, 2021
5988052
Don't rely on string representations in assertions
Aug 17, 2021
3207e57
move to_geodataframe snippet to samples
Aug 17, 2021
27071a0
Removed pointless importskips
Aug 17, 2021
abf473e
blacken
Aug 18, 2021
88b0653
use older dataclasses to try to deal with pip error in CI
Aug 18, 2021
1a4005c
git merge upstream/master
Aug 23, 2021
1b6b1d7
Don't need dataclasses after Python 3.6
Aug 23, 2021
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions docs/conf.py
Original file line number Diff line number Diff line change
Expand Up @@ -366,6 +366,8 @@
"grpc": ("https://grpc.github.io/grpc/python/", None),
"proto-plus": ("https://proto-plus-python.readthedocs.io/en/latest/", None),
"protobuf": ("https://googleapis.dev/python/protobuf/latest/", None),
"pandas": ("http://pandas.pydata.org/pandas-docs/dev", None),
"geopandas": ("https://geopandas.org/", None),
}


Expand Down
15 changes: 15 additions & 0 deletions docs/usage/pandas.rst
Original file line number Diff line number Diff line change
Expand Up @@ -37,6 +37,21 @@ To retrieve table rows as a :class:`pandas.DataFrame`:
:start-after: [START bigquery_list_rows_dataframe]
:end-before: [END bigquery_list_rows_dataframe]


Retrieve BigQuery GEOGRAPHY data as a GeoPandas GeoDataFrame
------------------------------------------------------------

`GeoPandas <https://geopandas.org/>`_ adds geospatial analytics
capabilities to Pandas. To retrieve query results containing
GEOGRAPHY data as a :class:`geopandas.GeoDataFrame`:

.. literalinclude:: ../samples/geography/to_geodataframe.py
:language: python
:dedent: 4
:start-after: [START bigquery_query_results_geodataframe]
:end-before: [END bigquery_query_results_geodataframe]


Load a Pandas DataFrame to a BigQuery Table
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Expand Down
71 changes: 67 additions & 4 deletions google/cloud/bigquery/_pandas_helpers.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,6 +24,36 @@
import pandas
except ImportError: # pragma: NO COVER
pandas = None
else:
import numpy

try:
# _BaseGeometry is used to detect shapely objevys in `bq_to_arrow_array`
from shapely.geometry.base import BaseGeometry as _BaseGeometry
except ImportError: # pragma: NO COVER
# No shapely, use NoneType for _BaseGeometry as a placeholder.
_BaseGeometry = type(None)
else:
if pandas is not None: # pragma: NO COVER

def _to_wkb():
# Create a closure that:
# - Adds a not-null check. This allows the returned function to
# be used directly with apply, unlike `shapely.wkb.dumps`.
# - Avoid extra work done by `shapely.wkb.dumps` that we don't need.
# - Caches the WKBWriter (and write method lookup :) )
# - Avoids adding WKBWriter, lgeos, and notnull to the module namespace.
from shapely.geos import WKBWriter, lgeos

write = WKBWriter(lgeos).write
notnull = pandas.notnull

def _to_wkb(v):
return write(v) if notnull(v) else v

return _to_wkb

_to_wkb = _to_wkb()

try:
import pyarrow
Expand Down Expand Up @@ -69,6 +99,7 @@
"uint8": "INTEGER",
"uint16": "INTEGER",
"uint32": "INTEGER",
"geometry": "GEOGRAPHY",
}


Expand Down Expand Up @@ -193,14 +224,16 @@ def bq_to_arrow_data_type(field):
return data_type_constructor()


def bq_to_arrow_field(bq_field):
def bq_to_arrow_field(bq_field, array_type=None):
"""Return the Arrow field, corresponding to a given BigQuery column.

Returns:
None: if the Arrow type cannot be determined.
"""
arrow_type = bq_to_arrow_data_type(bq_field)
if arrow_type:
if arrow_type is not None:
if array_type is not None:
arrow_type = array_type # For GEOGRAPHY, at least initially
is_nullable = bq_field.mode.upper() == "NULLABLE"
return pyarrow.field(bq_field.name, arrow_type, nullable=is_nullable)

Expand All @@ -225,7 +258,24 @@ def bq_to_arrow_schema(bq_schema):


def bq_to_arrow_array(series, bq_field):
arrow_type = bq_to_arrow_data_type(bq_field)
if bq_field.field_type.upper() == "GEOGRAPHY":
arrow_type = None
first = _first_valid(series)
if first is not None:
if series.dtype.name == "geometry" or isinstance(first, _BaseGeometry):
arrow_type = pyarrow.binary()
# Convert shapey geometry to WKB binary format:
series = series.apply(_to_wkb)
elif isinstance(first, bytes):
arrow_type = pyarrow.binary()
elif series.dtype.name == "geometry":
# We have a GeoSeries containing all nulls, convert it to a pandas series
series = pandas.Series(numpy.array(series))

if arrow_type is None:
arrow_type = bq_to_arrow_data_type(bq_field)
else:
arrow_type = bq_to_arrow_data_type(bq_field)

field_type_upper = bq_field.field_type.upper() if bq_field.field_type else ""

Expand Down Expand Up @@ -279,6 +329,12 @@ def list_columns_and_indexes(dataframe):
return columns_and_indexes


def _first_valid(series):
first_valid_index = series.first_valid_index()
if first_valid_index is not None:
return series.at[first_valid_index]


def dataframe_to_bq_schema(dataframe, bq_schema):
"""Convert a pandas DataFrame schema to a BigQuery schema.

Expand Down Expand Up @@ -319,6 +375,13 @@ def dataframe_to_bq_schema(dataframe, bq_schema):
# Otherwise, try to automatically determine the type based on the
# pandas dtype.
bq_type = _PANDAS_DTYPE_TO_BQ.get(dtype.name)
if bq_type is None:
sample_data = _first_valid(dataframe[column])
if (
isinstance(sample_data, _BaseGeometry)
and sample_data is not None # Paranoia
):
bq_type = "GEOGRAPHY"
bq_field = schema.SchemaField(column, bq_type)
bq_schema_out.append(bq_field)

Expand Down Expand Up @@ -450,11 +513,11 @@ def dataframe_to_arrow(dataframe, bq_schema):
arrow_names = []
arrow_fields = []
for bq_field in bq_schema:
arrow_fields.append(bq_to_arrow_field(bq_field))
arrow_names.append(bq_field.name)
arrow_arrays.append(
bq_to_arrow_array(get_column_or_index(dataframe, bq_field.name), bq_field)
)
arrow_fields.append(bq_to_arrow_field(bq_field, arrow_arrays[-1].type))

if all((field is not None for field in arrow_fields)):
return pyarrow.Table.from_arrays(
Expand Down
119 changes: 115 additions & 4 deletions google/cloud/bigquery/job/query.py
Original file line number Diff line number Diff line change
Expand Up @@ -53,6 +53,7 @@
# Assumption: type checks are only used by library developers and CI environments
# that have all optional dependencies installed, thus no conditional imports.
import pandas
import geopandas
import pyarrow
from google.api_core import retry as retries
from google.cloud import bigquery_storage
Expand Down Expand Up @@ -1487,6 +1488,7 @@ def to_dataframe(
create_bqstorage_client: bool = True,
date_as_object: bool = True,
max_results: Optional[int] = None,
geography_as_object: bool = False,
) -> "pandas.DataFrame":
"""Return a pandas DataFrame from a QueryJob

Expand Down Expand Up @@ -1538,13 +1540,27 @@ def to_dataframe(

.. versionadded:: 2.21.0

geography_as_object (Optional[bool]):
If ``True``, convert GEOGRAPHY data to :mod:`shapely`
geometry objects. If ``False`` (default), don't cast
geography data to :mod:`shapely` geometry objects.

.. versionadded:: 2.24.0

Returns:
A :class:`~pandas.DataFrame` populated with row data and column
headers from the query results. The column headers are derived
from the destination table's schema.
pandas.DataFrame:
A :class:`~pandas.DataFrame` populated with row data
and column headers from the query results. The column
headers are derived from the destination table's
schema.

Raises:
ValueError: If the `pandas` library cannot be imported.
ValueError:
If the :mod:`pandas` library cannot be imported, or
the :mod:`google.cloud.bigquery_storage_v1` module is
required but cannot be imported. Also if
`geography_as_object` is `True`, but the
:mod:`shapely` library cannot be imported.
"""
query_result = wait_for_query(self, progress_bar_type, max_results=max_results)
return query_result.to_dataframe(
Expand All @@ -1553,6 +1569,101 @@ def to_dataframe(
progress_bar_type=progress_bar_type,
create_bqstorage_client=create_bqstorage_client,
date_as_object=date_as_object,
geography_as_object=geography_as_object,
)

# If changing the signature of this method, make sure to apply the same
# changes to table.RowIterator.to_dataframe(), except for the max_results parameter
# that should only exist here in the QueryJob method.
def to_geodataframe(
self,
bqstorage_client: "bigquery_storage.BigQueryReadClient" = None,
dtypes: Dict[str, Any] = None,
progress_bar_type: str = None,
create_bqstorage_client: bool = True,
date_as_object: bool = True,
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

FYI: I'm trying to deprecate date_as_object: #861 and remove it in v3.

I think it solved the problem in the wrong way. Better to do what we're doing for TIMESTAMP columns (try cast to pandas type and fallback to object if it fails) but also for DATE and related columns.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Noted.

Given that, do you want to change the way we're indicating conversion to shapley geometry?

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I'm not as concerned about having a flag for geometry as object. I don't think Shapely suffers the same dtype weirdness that DATE columns do, where there's a risk of an exception if you make the wrong choice.

In date, because the supported range of dates in pandas is smaller than the supported range of dates in BigQuery, we can sometimes have to fallback to object. I'd rather not force the user to know the range of results they're expecting in order to keep to_dataframe from crashing, which is why I dislike date_as_object from an API design perspective.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Cool

max_results: Optional[int] = None,
geography_column: Optional[str] = None,
) -> "geopandas.GeoDataFrame":
"""Return a GeoPandas GeoDataFrame from a QueryJob

Args:
bqstorage_client (Optional[google.cloud.bigquery_storage_v1.BigQueryReadClient]):
A BigQuery Storage API client. If supplied, use the faster
BigQuery Storage API to fetch rows from BigQuery. This
API is a billable API.

This method requires the ``fastavro`` and
``google-cloud-bigquery-storage`` libraries.

Reading from a specific partition or snapshot is not
currently supported by this method.

dtypes (Optional[Map[str, Union[str, pandas.Series.dtype]]]):
A dictionary of column names pandas ``dtype``s. The provided
``dtype`` is used when constructing the series for the column
specified. Otherwise, the default pandas behavior is used.

progress_bar_type (Optional[str]):
If set, use the `tqdm <https://tqdm.github.io/>`_ library to
display a progress bar while the data downloads. Install the
``tqdm`` package to use this feature.

See
:func:`~google.cloud.bigquery.table.RowIterator.to_dataframe`
for details.

.. versionadded:: 1.11.0
create_bqstorage_client (Optional[bool]):
If ``True`` (default), create a BigQuery Storage API client
using the default API settings. The BigQuery Storage API
is a faster way to fetch rows from BigQuery. See the
``bqstorage_client`` parameter for more information.

This argument does nothing if ``bqstorage_client`` is supplied.

.. versionadded:: 1.24.0

date_as_object (Optional[bool]):
If ``True`` (default), cast dates to objects. If ``False``, convert
to datetime64[ns] dtype.

.. versionadded:: 1.26.0

max_results (Optional[int]):
Maximum number of rows to include in the result. No limit by default.

.. versionadded:: 2.21.0

geography_column (Optional[str]):
If there are more than one GEOGRAPHY column,
identifies which one to use to construct a GeoPandas
GeoDataFrame. This option can be ommitted if there's
only one GEOGRAPHY column.

Returns:
geopandas.GeoDataFrame:
A :class:`geopandas.GeoDataFrame` populated with row
data and column headers from the query results. The
column headers are derived from the destination
table's schema.

Raises:
ValueError:
If the :mod:`geopandas` library cannot be imported, or the
:mod:`google.cloud.bigquery_storage_v1` module is
required but cannot be imported.

.. versionadded:: 2.24.0
"""
query_result = wait_for_query(self, progress_bar_type, max_results=max_results)
return query_result.to_geodataframe(
bqstorage_client=bqstorage_client,
dtypes=dtypes,
progress_bar_type=progress_bar_type,
create_bqstorage_client=create_bqstorage_client,
date_as_object=date_as_object,
geography_column=geography_column,
)

def __iter__(self):
Expand Down
Loading