Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix: keyerror when the load_table_from_dataframe accesses a unmapped … #1535

Merged
merged 1 commit into from
Mar 28, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions google/cloud/bigquery/_pandas_helpers.py
Original file line number Diff line number Diff line change
Expand Up @@ -481,7 +481,7 @@ def dataframe_to_bq_schema(dataframe, bq_schema):
# pandas dtype.
bq_type = _PANDAS_DTYPE_TO_BQ.get(dtype.name)
if bq_type is None:
sample_data = _first_valid(dataframe[column])
sample_data = _first_valid(dataframe.reset_index()[column])
if (
isinstance(sample_data, _BaseGeometry)
and sample_data is not None # Paranoia
Expand Down Expand Up @@ -544,7 +544,7 @@ def augment_schema(dataframe, current_bq_schema):
augmented_schema.append(field)
continue

arrow_table = pyarrow.array(dataframe[field.name])
arrow_table = pyarrow.array(dataframe.reset_index()[field.name])

if pyarrow.types.is_list(arrow_table.type):
# `pyarrow.ListType`
Expand Down
106 changes: 80 additions & 26 deletions tests/unit/test__pandas_helpers.py
Original file line number Diff line number Diff line change
Expand Up @@ -930,32 +930,6 @@ def test_list_columns_and_indexes_with_multiindex(module_under_test):
assert columns_and_indexes == expected


@pytest.mark.skipif(pandas is None, reason="Requires `pandas`")
def test_dataframe_to_bq_schema_dict_sequence(module_under_test):
df_data = collections.OrderedDict(
[
("str_column", ["hello", "world"]),
("int_column", [42, 8]),
("bool_column", [True, False]),
]
)
dataframe = pandas.DataFrame(df_data)

dict_schema = [
{"name": "str_column", "type": "STRING", "mode": "NULLABLE"},
{"name": "bool_column", "type": "BOOL", "mode": "REQUIRED"},
]

returned_schema = module_under_test.dataframe_to_bq_schema(dataframe, dict_schema)

expected_schema = (
schema.SchemaField("str_column", "STRING", "NULLABLE"),
schema.SchemaField("int_column", "INTEGER", "NULLABLE"),
schema.SchemaField("bool_column", "BOOL", "REQUIRED"),
)
assert returned_schema == expected_schema


@pytest.mark.skipif(pandas is None, reason="Requires `pandas`")
def test_dataframe_to_arrow_with_multiindex(module_under_test):
bq_schema = (
Expand Down Expand Up @@ -1190,6 +1164,86 @@ def test_dataframe_to_parquet_compression_method(module_under_test):
assert call_args.kwargs.get("compression") == "ZSTD"


@pytest.mark.skipif(pandas is None, reason="Requires `pandas`")
def test_dataframe_to_bq_schema_w_named_index(module_under_test):
df_data = collections.OrderedDict(
[
("str_column", ["hello", "world"]),
("int_column", [42, 8]),
("bool_column", [True, False]),
]
)
index = pandas.Index(["a", "b"], name="str_index")
dataframe = pandas.DataFrame(df_data, index=index)

returned_schema = module_under_test.dataframe_to_bq_schema(dataframe, [])

expected_schema = (
schema.SchemaField("str_index", "STRING", "NULLABLE"),
schema.SchemaField("str_column", "STRING", "NULLABLE"),
schema.SchemaField("int_column", "INTEGER", "NULLABLE"),
schema.SchemaField("bool_column", "BOOLEAN", "NULLABLE"),
)
assert returned_schema == expected_schema


@pytest.mark.skipif(pandas is None, reason="Requires `pandas`")
def test_dataframe_to_bq_schema_w_multiindex(module_under_test):
df_data = collections.OrderedDict(
[
("str_column", ["hello", "world"]),
("int_column", [42, 8]),
("bool_column", [True, False]),
]
)
index = pandas.MultiIndex.from_tuples(
[
("a", 0, datetime.datetime(1999, 12, 31, 23, 59, 59, 999999)),
("a", 0, datetime.datetime(2000, 1, 1, 0, 0, 0)),
],
names=["str_index", "int_index", "dt_index"],
)
dataframe = pandas.DataFrame(df_data, index=index)

returned_schema = module_under_test.dataframe_to_bq_schema(dataframe, [])

expected_schema = (
schema.SchemaField("str_index", "STRING", "NULLABLE"),
schema.SchemaField("int_index", "INTEGER", "NULLABLE"),
schema.SchemaField("dt_index", "DATETIME", "NULLABLE"),
schema.SchemaField("str_column", "STRING", "NULLABLE"),
schema.SchemaField("int_column", "INTEGER", "NULLABLE"),
schema.SchemaField("bool_column", "BOOLEAN", "NULLABLE"),
)
assert returned_schema == expected_schema


@pytest.mark.skipif(pandas is None, reason="Requires `pandas`")
def test_dataframe_to_bq_schema_w_bq_schema(module_under_test):
df_data = collections.OrderedDict(
[
("str_column", ["hello", "world"]),
("int_column", [42, 8]),
("bool_column", [True, False]),
]
)
dataframe = pandas.DataFrame(df_data)

dict_schema = [
{"name": "str_column", "type": "STRING", "mode": "NULLABLE"},
{"name": "bool_column", "type": "BOOL", "mode": "REQUIRED"},
]

returned_schema = module_under_test.dataframe_to_bq_schema(dataframe, dict_schema)

expected_schema = (
schema.SchemaField("str_column", "STRING", "NULLABLE"),
schema.SchemaField("int_column", "INTEGER", "NULLABLE"),
schema.SchemaField("bool_column", "BOOL", "REQUIRED"),
)
assert returned_schema == expected_schema


@pytest.mark.skipif(pandas is None, reason="Requires `pandas`")
def test_dataframe_to_bq_schema_fallback_needed_wo_pyarrow(module_under_test):
dataframe = pandas.DataFrame(
Expand Down