Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

chore: add tpch q14-18 #928

Merged
merged 5 commits into from
Aug 29, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
25 changes: 25 additions & 0 deletions tests/benchmark/tpch/q14.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,25 @@
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pathlib

import benchmark.utils as utils
import bigframes_vendored.tpch.queries.q14 as vendored_tpch_q14

if __name__ == "__main__":
dataset_id, session, suffix = utils.get_tpch_configuration()
current_path = pathlib.Path(__file__).absolute()

utils.get_execution_time(
vendored_tpch_q14.q, current_path, suffix, dataset_id, session
)
25 changes: 25 additions & 0 deletions tests/benchmark/tpch/q15.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,25 @@
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pathlib

import benchmark.utils as utils
import bigframes_vendored.tpch.queries.q15 as vendored_tpch_q15

if __name__ == "__main__":
dataset_id, session, suffix = utils.get_tpch_configuration()
current_path = pathlib.Path(__file__).absolute()

utils.get_execution_time(
vendored_tpch_q15.q, current_path, suffix, dataset_id, session
)
25 changes: 25 additions & 0 deletions tests/benchmark/tpch/q16.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,25 @@
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pathlib

import benchmark.utils as utils
import bigframes_vendored.tpch.queries.q16 as vendored_tpch_q16

if __name__ == "__main__":
dataset_id, session, suffix = utils.get_tpch_configuration()
current_path = pathlib.Path(__file__).absolute()

utils.get_execution_time(
vendored_tpch_q16.q, current_path, suffix, dataset_id, session
)
25 changes: 25 additions & 0 deletions tests/benchmark/tpch/q17.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,25 @@
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pathlib

import benchmark.utils as utils
import bigframes_vendored.tpch.queries.q17 as vendored_tpch_q17

if __name__ == "__main__":
dataset_id, session, suffix = utils.get_tpch_configuration()
current_path = pathlib.Path(__file__).absolute()

utils.get_execution_time(
vendored_tpch_q17.q, current_path, suffix, dataset_id, session
)
25 changes: 25 additions & 0 deletions tests/benchmark/tpch/q18.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,25 @@
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pathlib

import benchmark.utils as utils
import bigframes_vendored.tpch.queries.q18 as vendored_tpch_q18

if __name__ == "__main__":
dataset_id, session, suffix = utils.get_tpch_configuration()
current_path = pathlib.Path(__file__).absolute()

utils.get_execution_time(
vendored_tpch_q18.q, current_path, suffix, dataset_id, session
)
34 changes: 34 additions & 0 deletions third_party/bigframes_vendored/tpch/queries/q14.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,34 @@
# Contains code from https://github.com/pola-rs/tpch/blob/main/queries/polars/q14.py

from datetime import date

import bigframes


def q(dataset_id: str, session: bigframes.Session):
lineitem = session.read_gbq(
f"bigframes-dev-perf.{dataset_id}.LINEITEM",
index_col=bigframes.enums.DefaultIndexKind.NULL,
)
part = session.read_gbq(
f"bigframes-dev-perf.{dataset_id}.PART",
index_col=bigframes.enums.DefaultIndexKind.NULL,
)

var1 = date(1995, 9, 1)
var2 = date(1995, 10, 1)

merged = lineitem.merge(part, left_on="L_PARTKEY", right_on="P_PARTKEY")

filtered = merged[(merged["L_SHIPDATE"] >= var1) & (merged["L_SHIPDATE"] < var2)]

filtered["CONDI_REVENUE"] = (
filtered["L_EXTENDEDPRICE"] * (1 - filtered["L_DISCOUNT"])
) * filtered["P_TYPE"].str.contains("PROMO").astype("Int64")

total_revenue = (filtered["L_EXTENDEDPRICE"] * (1 - filtered["L_DISCOUNT"])).sum()
promo_revenue = filtered["CONDI_REVENUE"].sum()

promo_revenue_percent = 100.00 * promo_revenue / total_revenue

_ = round(promo_revenue_percent, 2)
48 changes: 48 additions & 0 deletions third_party/bigframes_vendored/tpch/queries/q15.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,48 @@
# Contains code from https://github.com/pola-rs/tpch/blob/main/queries/polars/q15.py

from datetime import date

import bigframes
import bigframes.pandas as bpd


def q(dataset_id: str, session: bigframes.Session):
lineitem = session.read_gbq(
f"bigframes-dev-perf.{dataset_id}.LINEITEM",
index_col=bigframes.enums.DefaultIndexKind.NULL,
)
supplier = session.read_gbq(
f"bigframes-dev-perf.{dataset_id}.SUPPLIER",
index_col=bigframes.enums.DefaultIndexKind.NULL,
)

var1 = date(1996, 1, 1)
var2 = date(1996, 4, 1)

filtered_lineitem = lineitem[
(lineitem["L_SHIPDATE"] >= var1) & (lineitem["L_SHIPDATE"] < var2)
]
filtered_lineitem["REVENUE"] = filtered_lineitem["L_EXTENDEDPRICE"] * (
1 - filtered_lineitem["L_DISCOUNT"]
)

grouped_revenue = (
filtered_lineitem.groupby("L_SUPPKEY", as_index=False)
.agg(TOTAL_REVENUE=bpd.NamedAgg(column="REVENUE", aggfunc="sum"))
.rename(columns={"L_SUPPKEY": "SUPPLIER_NO"})
)

joined_data = bpd.merge(
supplier, grouped_revenue, left_on="S_SUPPKEY", right_on="SUPPLIER_NO"
)

max_revenue = joined_data["TOTAL_REVENUE"].max()
max_revenue_suppliers = joined_data[joined_data["TOTAL_REVENUE"] == max_revenue]

max_revenue_suppliers["TOTAL_REVENUE"] = max_revenue_suppliers[
"TOTAL_REVENUE"
].round(2)
q_final = max_revenue_suppliers[
["S_SUPPKEY", "S_NAME", "S_ADDRESS", "S_PHONE", "TOTAL_REVENUE"]
].sort_values("S_SUPPKEY")
q_final.to_gbq()
44 changes: 44 additions & 0 deletions third_party/bigframes_vendored/tpch/queries/q16.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,44 @@
# Contains code from https://github.com/pola-rs/tpch/blob/main/queries/polars/q16.py

import bigframes
import bigframes.pandas as bpd


def q(dataset_id: str, session: bigframes.Session):
part = session.read_gbq(
f"bigframes-dev-perf.{dataset_id}.PART",
index_col=bigframes.enums.DefaultIndexKind.NULL,
)
partsupp = session.read_gbq(
f"bigframes-dev-perf.{dataset_id}.PARTSUPP",
index_col=bigframes.enums.DefaultIndexKind.NULL,
)
supplier = session.read_gbq(
f"bigframes-dev-perf.{dataset_id}.SUPPLIER",
index_col=bigframes.enums.DefaultIndexKind.NULL,
)

var1 = "Brand#45"

supplier = supplier[
supplier["S_COMMENT"].str.contains("Customer.*Complaints", regex=True)
]["S_SUPPKEY"]

q_filtered = part.merge(partsupp, left_on="P_PARTKEY", right_on="PS_PARTKEY")
q_filtered = q_filtered[q_filtered["P_BRAND"] != var1]
q_filtered = q_filtered[~q_filtered["P_TYPE"].str.contains("MEDIUM POLISHED")]
q_filtered = q_filtered[q_filtered["P_SIZE"].isin([49, 14, 23, 45, 19, 3, 36, 9])]

final_df = q_filtered[~q_filtered["PS_SUPPKEY"].isin(supplier)]

grouped = final_df.groupby(["P_BRAND", "P_TYPE", "P_SIZE"], as_index=False)
result = grouped.agg(
SUPPLIER_CNT=bpd.NamedAgg(column="PS_SUPPKEY", aggfunc="nunique")
)

q_final = result.sort_values(
by=["SUPPLIER_CNT", "P_BRAND", "P_TYPE", "P_SIZE"],
ascending=[False, True, True, True],
)

q_final.to_gbq()
40 changes: 40 additions & 0 deletions third_party/bigframes_vendored/tpch/queries/q17.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,40 @@
# Contains code from https://github.com/pola-rs/tpch/blob/main/queries/polars/q17.py

import bigframes
import bigframes.pandas as bpd


def q(dataset_id: str, session: bigframes.Session):
lineitem = session.read_gbq(
f"bigframes-dev-perf.{dataset_id}.LINEITEM",
index_col=bigframes.enums.DefaultIndexKind.NULL,
)
part = session.read_gbq(
f"bigframes-dev-perf.{dataset_id}.PART",
index_col=bigframes.enums.DefaultIndexKind.NULL,
)

VAR1 = "Brand#23"
VAR2 = "MED BOX"

filtered_part = part[(part["P_BRAND"] == VAR1) & (part["P_CONTAINER"] == VAR2)]
q1 = bpd.merge(
filtered_part, lineitem, how="left", left_on="P_PARTKEY", right_on="L_PARTKEY"
)

grouped = (
q1.groupby("P_PARTKEY", as_index=False)
.agg(AVG_QUANTITY=bpd.NamedAgg(column="L_QUANTITY", aggfunc="mean"))
.rename(columns={"P_PARTKEY": "KEY"})
)
grouped["AVG_QUANTITY"] = grouped["AVG_QUANTITY"] * 0.2

q_final = bpd.merge(grouped, q1, left_on="KEY", right_on="P_PARTKEY")

q_final = q_final[q_final["L_QUANTITY"] < q_final["AVG_QUANTITY"]]

q_final = bpd.DataFrame(
{"AVG_YEARLY": [(q_final["L_EXTENDEDPRICE"].sum() / 7.0).round(2)]}
)

q_final.to_gbq()
51 changes: 51 additions & 0 deletions third_party/bigframes_vendored/tpch/queries/q18.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,51 @@
# Contains code from https://github.com/pola-rs/tpch/blob/main/queries/polars/q18.py

import typing

import bigframes
import bigframes.pandas as bpd


def q(dataset_id: str, session: bigframes.Session):
customer = session.read_gbq(
f"bigframes-dev-perf.{dataset_id}.CUSTOMER",
index_col=bigframes.enums.DefaultIndexKind.NULL,
)
lineitem = session.read_gbq(
f"bigframes-dev-perf.{dataset_id}.LINEITEM",
index_col=bigframes.enums.DefaultIndexKind.NULL,
)
orders = session.read_gbq(
f"bigframes-dev-perf.{dataset_id}.ORDERS",
index_col=bigframes.enums.DefaultIndexKind.NULL,
)

var1 = 300

q1 = lineitem.groupby("L_ORDERKEY", as_index=False).agg(
SUM_QUANTITY=bpd.NamedAgg(column="L_QUANTITY", aggfunc="sum")
)
q1 = q1[q1["SUM_QUANTITY"] > var1]

filtered_orders = orders.merge(
q1, left_on="O_ORDERKEY", right_on="L_ORDERKEY", how="inner"
)

result = filtered_orders.merge(
lineitem, left_on="O_ORDERKEY", right_on="L_ORDERKEY"
)
result = result.merge(customer, left_on="O_CUSTKEY", right_on="C_CUSTKEY")

final_result = result.groupby(
["C_NAME", "C_CUSTKEY", "O_ORDERKEY", "O_ORDERDATE", "O_TOTALPRICE"],
as_index=False,
).agg(COL6=bpd.NamedAgg(column="L_QUANTITY", aggfunc="sum"))

final_result = final_result.rename(columns={"O_ORDERDATE": "O_ORDERDAT"})

final_result = typing.cast(bpd.DataFrame, final_result).sort_values(
["O_TOTALPRICE", "O_ORDERDAT"], ascending=[False, True]
)

q_final = final_result.head(100)
q_final.to_gbq()