Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix: Properly support format param for numerical input. #486

Merged
merged 4 commits into from
Mar 21, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
17 changes: 13 additions & 4 deletions bigframes/core/compile/scalar_op_compiler.py
Original file line number Diff line number Diff line change
Expand Up @@ -42,6 +42,8 @@

# Datetime constants
UNIT_TO_US_CONVERSION_FACTORS = {
"W": 7 * 24 * 60 * 60 * 1000 * 1000,
"d": 24 * 60 * 60 * 1000 * 1000,
"D": 24 * 60 * 60 * 1000 * 1000,
"h": 60 * 60 * 1000 * 1000,
"m": 60 * 1000 * 1000,
Expand Down Expand Up @@ -733,12 +735,19 @@ def to_datetime_op_impl(x: ibis_types.Value, op: ops.ToDatetimeOp):
if x.type() == ibis_dtypes.str:
x = x.to_timestamp(op.format) if op.format else timestamp(x)
elif x.type() == ibis_dtypes.Timestamp(timezone="UTC"):
if op.format:
raise NotImplementedError(
f"Format parameter is not supported for Timestamp input types. {constants.FEEDBACK_LINK}"
)
return x
elif x.type() != ibis_dtypes.timestamp:
# The default unit is set to "ns" (nanoseconds) for consistency
# with pandas, where "ns" is the default unit for datetime operations.
unit = op.unit or "ns"
x = numeric_to_datatime(x, unit)
if op.format:
x = x.cast(ibis_dtypes.str).to_timestamp(op.format)
else:
# The default unit is set to "ns" (nanoseconds) for consistency
# with pandas, where "ns" is the default unit for datetime operations.
unit = op.unit or "ns"
x = numeric_to_datatime(x, unit)

return x.cast(ibis_dtypes.Timestamp(timezone="UTC" if op.utc else None))

Expand Down
8 changes: 8 additions & 0 deletions bigframes/core/tools/datetimes.py
Original file line number Diff line number Diff line change
Expand Up @@ -73,6 +73,14 @@ def to_datetime(
f"String and Timestamp requires utc=True. {constants.FEEDBACK_LINK}"
)

if format and unit and arg.dtype in ("Int64", "Float64"): # type: ignore
raise ValueError("cannot specify both format and unit")

if unit and arg.dtype not in ("Int64", "Float64"): # type: ignore
raise NotImplementedError(
f"Unit parameter is not supported for non-numerical input types. {constants.FEEDBACK_LINK}"
)

return arg._apply_unary_op( # type: ignore
ops.ToDatetimeOp(
utc=utc,
Expand Down
43 changes: 43 additions & 0 deletions tests/system/small/test_pandas.py
Original file line number Diff line number Diff line change
Expand Up @@ -539,3 +539,46 @@ def test_to_datetime_series(scalars_dfs):
pd.testing.assert_series_equal(
bf_result, pd_result, check_index_type=False, check_names=False
)


@pytest.mark.parametrize(
("arg", "unit"),
[
([1, 2, 3], "W"),
([1, 2, 3], "d"),
([1, 2, 3], "D"),
([1, 2, 3], "h"),
([1, 2, 3], "m"),
([20242330, 25244685, 34324234], "s"),
([20242330000, 25244685000, 34324234000], "ms"),
([20242330000000, 25244685000000, 34324234000000], "us"),
([20242330000000000, 25244685000000000, 34324234000000000], "ns"),
],
)
def test_to_datetime_unit_param(arg, unit):
bf_result = bpd.to_datetime(arg, unit=unit).to_pandas().astype("datetime64[ns]")
pd_result = pd.Series(pd.to_datetime(arg, unit=unit)).dt.floor("us")
pd.testing.assert_series_equal(
bf_result, pd_result, check_index_type=False, check_names=False
)


@pytest.mark.parametrize(
("arg", "utc", "format"),
[
([20230110, 20230101, 20230101], False, "%Y%m%d"),
([201301.01], False, "%Y%m.%d"),
(["2023-01-10", "2023-01-20", "2023-01-01"], True, "%Y-%m-%d"),
(["2014-08-15 07:19"], True, "%Y-%m-%d %H:%M"),
],
)
def test_to_datetime_format_param(arg, utc, format):
bf_result = (
bpd.to_datetime(arg, utc=utc, format=format)
.to_pandas()
.astype("datetime64[ns, UTC]" if utc else "datetime64[ns]")
)
pd_result = pd.Series(pd.to_datetime(arg, utc=utc, format=format)).dt.floor("us")
pd.testing.assert_series_equal(
bf_result, pd_result, check_index_type=False, check_names=False
)