Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: add ml PCA model params #474

Merged
merged 1 commit into from
Mar 20, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
15 changes: 12 additions & 3 deletions bigframes/ml/decomposition.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,7 @@

from __future__ import annotations

from typing import List, Optional, Union
from typing import List, Literal, Optional, Union

import bigframes_vendored.sklearn.decomposition._pca
from google.cloud import bigquery
Expand All @@ -35,21 +35,29 @@ class PCA(
):
__doc__ = bigframes_vendored.sklearn.decomposition._pca.PCA.__doc__

def __init__(self, n_components: int = 3):
def __init__(
self,
n_components: int = 3,
*,
svd_solver: Literal["full", "randomized", "auto"] = "auto",
):
self.n_components = n_components
self.svd_solver = svd_solver
self._bqml_model: Optional[core.BqmlModel] = None
self._bqml_model_factory = globals.bqml_model_factory()

@classmethod
def _from_bq(cls, session: bigframes.Session, model: bigquery.Model) -> PCA:
assert model.model_type == "PCA"

kwargs = {}
kwargs: dict = {}

# See https://cloud.google.com/bigquery/docs/reference/rest/v2/models#trainingrun
last_fitting = model.training_runs[-1]["trainingOptions"]
if "numPrincipalComponents" in last_fitting:
kwargs["n_components"] = int(last_fitting["numPrincipalComponents"])
if "pcaSolver" in last_fitting:
kwargs["svd_solver"] = str(last_fitting["pcaSolver"])

new_pca = cls(**kwargs)
new_pca._bqml_model = core.BqmlModel(session, model)
Expand All @@ -69,6 +77,7 @@ def _fit(
options={
"model_type": "PCA",
"num_principal_components": self.n_components,
"pca_solver": self.svd_solver,
},
)
return self
Expand Down
71 changes: 71 additions & 0 deletions tests/system/large/ml/test_decomposition.py
Original file line number Diff line number Diff line change
Expand Up @@ -84,3 +84,74 @@ def test_decomposition_configure_fit_score_predict(
in reloaded_model._bqml_model.model_name
)
assert reloaded_model.n_components == 3


def test_decomposition_configure_fit_score_predict_params(
session, penguins_df_default_index, dataset_id
):
model = decomposition.PCA(n_components=5, svd_solver="randomized")
model.fit(penguins_df_default_index)

new_penguins = session.read_pandas(
pd.DataFrame(
{
"tag_number": [1633, 1672, 1690],
"species": [
"Adelie Penguin (Pygoscelis adeliae)",
"Gentoo penguin (Pygoscelis papua)",
"Adelie Penguin (Pygoscelis adeliae)",
],
"island": ["Dream", "Biscoe", "Torgersen"],
"culmen_length_mm": [37.8, 46.5, 41.1],
"culmen_depth_mm": [18.1, 14.8, 18.6],
"flipper_length_mm": [193.0, 217.0, 189.0],
"body_mass_g": [3750.0, 5200.0, 3325.0],
"sex": ["MALE", "FEMALE", "MALE"],
}
).set_index("tag_number")
)

# Check score to ensure the model was fitted
score_result = model.score(new_penguins).to_pandas()
score_expected = pd.DataFrame(
{
"total_explained_variance_ratio": [0.932897],
},
dtype="Float64",
)
score_expected = score_expected.reindex(index=score_expected.index.astype("Int64"))

pd.testing.assert_frame_equal(
score_result, score_expected, check_exact=False, rtol=0.1
)

result = model.predict(new_penguins).to_pandas()
expected = pd.DataFrame(
{
"principal_component_1": [-1.459, 2.258, -1.685],
"principal_component_2": [-1.120, -1.351, -0.874],
"principal_component_3": [-0.646, 0.443, -0.704],
"principal_component_4": [-0.539, 0.234, -0.571],
"principal_component_5": [-0.876, 0.122, 0.609],
},
dtype="Float64",
index=pd.Index([1633, 1672, 1690], name="tag_number", dtype="Int64"),
)

tests.system.utils.assert_pandas_df_equal_pca(
result,
expected,
check_exact=False,
rtol=0.1,
)

# save, load, check n_components to ensure configuration was kept
reloaded_model = model.to_gbq(
f"{dataset_id}.temp_configured_pca_model", replace=True
)
assert (
f"{dataset_id}.temp_configured_pca_model"
in reloaded_model._bqml_model.model_name
)
assert reloaded_model.n_components == 5
assert reloaded_model.svd_solver == "RANDOMIZED"
Original file line number Diff line number Diff line change
Expand Up @@ -32,9 +32,11 @@ class PCA(BaseEstimator, metaclass=ABCMeta):
truncated SVD.
Args:
n_components (Optional[int], default 3):
n_components (Optional[int], default 3):
Number of components to keep. if n_components is not set all components
are kept.
svd_solver ("full", "randomized" or "auto", default "auto"):
The solver to use to calculate the principal components. Details: https://cloud.google.com/bigquery/docs/reference/standard-sql/bigqueryml-syntax-create-pca#pca_solver.
"""

Expand Down