Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: add detect_anomalies to ml ARIMAPlus and KMeans models #426

Merged
merged 2 commits into from
Mar 12, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
28 changes: 28 additions & 0 deletions bigframes/ml/cluster.py
Original file line number Diff line number Diff line change
Expand Up @@ -96,6 +96,34 @@ def predict(

return self._bqml_model.predict(X)

def detect_anomalies(
self, X: Union[bpd.DataFrame, bpd.Series], *, contamination: float = 0.1
) -> bpd.DataFrame:
"""Detect the anomaly data points of the input.

Args:
X (bigframes.dataframe.DataFrame or bigframes.series.Series):
Series or a DataFrame to detect anomalies.
contamination (float, default 0.1):
Identifies the proportion of anomalies in the training dataset that are used to create the model.
The value must be in the range [0, 0.5].

Returns:
bigframes.dataframe.DataFrame: detected DataFrame."""
if contamination < 0.0 or contamination > 0.5:
raise ValueError(
f"contamination must be [0.0, 0.5], but is {contamination}."
)

if not self._bqml_model:
raise RuntimeError("A model must be fitted before detect_anomalies")

(X,) = utils.convert_to_dataframe(X)

return self._bqml_model.detect_anomalies(
X, options={"contamination": contamination}
)

def to_gbq(self, model_name: str, replace: bool = False) -> KMeans:
"""Save the model to BigQuery.

Expand Down
2 changes: 1 addition & 1 deletion bigframes/ml/decomposition.py
Original file line number Diff line number Diff line change
Expand Up @@ -111,7 +111,7 @@ def predict(self, X: Union[bpd.DataFrame, bpd.Series]) -> bpd.DataFrame:
return self._bqml_model.predict(X)

def detect_anomalies(
self, X: Union[bpd.DataFrame, bpd.Series], *, contamination=0.1
self, X: Union[bpd.DataFrame, bpd.Series], *, contamination: float = 0.1
) -> bpd.DataFrame:
"""Detect the anomaly data points of the input.
Expand Down
30 changes: 30 additions & 0 deletions bigframes/ml/forecasting.py
Original file line number Diff line number Diff line change
Expand Up @@ -119,6 +119,36 @@ def predict(
options={"horizon": horizon, "confidence_level": confidence_level}
)

def detect_anomalies(
self,
X: Union[bpd.DataFrame, bpd.Series],
*,
anomaly_prob_threshold: float = 0.95,
) -> bpd.DataFrame:
"""Detect the anomaly data points of the input.

Args:
X (bigframes.dataframe.DataFrame or bigframes.series.Series):
Series or a DataFrame to detect anomalies.
anomaly_prob_threshold (float, default 0.95):
Identifies the custom threshold to use for anomaly detection. The value must be in the range [0, 1), with a default value of 0.95.

Returns:
bigframes.dataframe.DataFrame: detected DataFrame."""
if anomaly_prob_threshold < 0.0 or anomaly_prob_threshold >= 1.0:
raise ValueError(
f"anomaly_prob_threshold must be [0.0, 1.0), but is {anomaly_prob_threshold}."
)

if not self._bqml_model:
raise RuntimeError("A model must be fitted before detect_anomalies")

(X,) = utils.convert_to_dataframe(X)

return self._bqml_model.detect_anomalies(
X, options={"anomaly_prob_threshold": anomaly_prob_threshold}
)

def score(
self,
X: Union[bpd.DataFrame, bpd.Series],
Expand Down
45 changes: 45 additions & 0 deletions tests/system/small/ml/test_cluster.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,7 @@
import pandas as pd

from bigframes.ml import cluster
import bigframes.pandas as bpd
from tests.system.utils import assert_pandas_df_equal

_PD_NEW_PENGUINS = pd.DataFrame.from_dict(
Expand Down Expand Up @@ -73,6 +74,50 @@ def test_kmeans_predict(session, penguins_kmeans_model: cluster.KMeans):
assert_pandas_df_equal(result, expected, ignore_order=True)


def test_kmeans_detect_anomalies(
penguins_kmeans_model: cluster.KMeans, new_penguins_df: bpd.DataFrame
):
anomalies = penguins_kmeans_model.detect_anomalies(new_penguins_df).to_pandas()
expected = pd.DataFrame(
{
"is_anomaly": [False, False, False],
"normalized_distance": [1.082937, 0.77139, 0.478304],
},
index=pd.Index([1633, 1672, 1690], name="tag_number", dtype="Int64"),
)

pd.testing.assert_frame_equal(
anomalies[["is_anomaly", "normalized_distance"]].sort_index(),
expected,
check_exact=False,
check_dtype=False,
rtol=0.1,
)


def test_kmeans_detect_anomalies_params(
penguins_kmeans_model: cluster.KMeans, new_penguins_df: bpd.DataFrame
):
anomalies = penguins_kmeans_model.detect_anomalies(
new_penguins_df, contamination=0.4
).to_pandas()
expected = pd.DataFrame(
{
"is_anomaly": [True, False, False],
"normalized_distance": [1.082937, 0.77139, 0.478304],
},
index=pd.Index([1633, 1672, 1690], name="tag_number", dtype="Int64"),
)

pd.testing.assert_frame_equal(
anomalies[["is_anomaly", "normalized_distance"]].sort_index(),
expected,
check_exact=False,
check_dtype=False,
rtol=0.1,
)


def test_kmeans_score(session, penguins_kmeans_model: cluster.KMeans):
new_penguins = session.read_pandas(_PD_NEW_PENGUINS)
result = penguins_kmeans_model.score(new_penguins).to_pandas()
Expand Down
23 changes: 23 additions & 0 deletions tests/system/small/ml/test_decomposition.py
Original file line number Diff line number Diff line change
Expand Up @@ -59,6 +59,29 @@ def test_pca_detect_anomalies(
)


def test_pca_detect_anomalies_params(
penguins_pca_model: decomposition.PCA, new_penguins_df: bpd.DataFrame
):
anomalies = penguins_pca_model.detect_anomalies(
new_penguins_df, contamination=0.2
).to_pandas()
expected = pd.DataFrame(
{
"is_anomaly": [False, True, True],
"mean_squared_error": [0.254188, 0.731243, 0.298889],
},
index=pd.Index([1633, 1672, 1690], name="tag_number", dtype="Int64"),
)

pd.testing.assert_frame_equal(
anomalies[["is_anomaly", "mean_squared_error"]].sort_index(),
expected,
check_exact=False,
check_dtype=False,
rtol=0.1,
)


def test_pca_score(penguins_pca_model: decomposition.PCA):
result = penguins_pca_model.score().to_pandas()
expected = pd.DataFrame(
Expand Down
70 changes: 58 additions & 12 deletions tests/system/small/ml/test_forecasting.py
Original file line number Diff line number Diff line change
Expand Up @@ -35,7 +35,9 @@
]


def test_model_predict_default(time_series_arima_plus_model: forecasting.ARIMAPlus):
def test_arima_plus_predict_default(
time_series_arima_plus_model: forecasting.ARIMAPlus,
):
utc = pytz.utc
predictions = time_series_arima_plus_model.predict().to_pandas()
assert predictions.shape == (3, 8)
Expand Down Expand Up @@ -63,7 +65,7 @@ def test_model_predict_default(time_series_arima_plus_model: forecasting.ARIMAPl
)


def test_model_predict_params(time_series_arima_plus_model: forecasting.ARIMAPlus):
def test_arima_plus_predict_params(time_series_arima_plus_model: forecasting.ARIMAPlus):
utc = pytz.utc
predictions = time_series_arima_plus_model.predict(
horizon=4, confidence_level=0.9
Expand Down Expand Up @@ -94,7 +96,55 @@ def test_model_predict_params(time_series_arima_plus_model: forecasting.ARIMAPlu
)


def test_model_score(
def test_arima_plus_detect_anomalies(
time_series_arima_plus_model: forecasting.ARIMAPlus, new_time_series_df
):
anomalies = time_series_arima_plus_model.detect_anomalies(
new_time_series_df
).to_pandas()

expected = pd.DataFrame(
{
"is_anomaly": [False, False, False],
"lower_bound": [2349.301736, 2153.614829, 1849.040192],
"upper_bound": [3099.642833, 3033.12195, 2858.185876],
"anomaly_probability": [0.757824, 0.322559, 0.43011],
},
)
pd.testing.assert_frame_equal(
anomalies[["is_anomaly", "lower_bound", "upper_bound", "anomaly_probability"]],
expected,
rtol=0.1,
check_index_type=False,
check_dtype=False,
)


def test_arima_plus_detect_anomalies_params(
time_series_arima_plus_model: forecasting.ARIMAPlus, new_time_series_df
):
anomalies = time_series_arima_plus_model.detect_anomalies(
new_time_series_df, anomaly_prob_threshold=0.7
).to_pandas()

expected = pd.DataFrame(
{
"is_anomaly": [True, False, False],
"lower_bound": [2525.5363, 2360.1870, 2086.0609],
"upper_bound": [2923.408256, 2826.54981, 2621.165188],
"anomaly_probability": [0.757824, 0.322559, 0.43011],
},
)
pd.testing.assert_frame_equal(
anomalies[["is_anomaly", "lower_bound", "upper_bound", "anomaly_probability"]],
expected,
rtol=0.1,
check_index_type=False,
check_dtype=False,
)


def test_arima_plus_score(
time_series_arima_plus_model: forecasting.ARIMAPlus, new_time_series_df
):
result = time_series_arima_plus_model.score(
Expand All @@ -118,16 +168,14 @@ def test_model_score(
)


def test_model_summary(
time_series_arima_plus_model: forecasting.ARIMAPlus, new_time_series_df
):
def test_arima_plus_summary(time_series_arima_plus_model: forecasting.ARIMAPlus):
result = time_series_arima_plus_model.summary()
assert result.shape == (1, 12)
assert all(column in result.columns for column in ARIMA_EVALUATE_OUTPUT_COL)


def test_model_summary_show_all_candidates(
time_series_arima_plus_model: forecasting.ARIMAPlus, new_time_series_df
def test_arima_plus_summary_show_all_candidates(
time_series_arima_plus_model: forecasting.ARIMAPlus,
):
result = time_series_arima_plus_model.summary(
show_all_candidate_models=True,
Expand All @@ -136,7 +184,7 @@ def test_model_summary_show_all_candidates(
assert all(column in result.columns for column in ARIMA_EVALUATE_OUTPUT_COL)


def test_model_score_series(
def test_arima_plus_score_series(
time_series_arima_plus_model: forecasting.ARIMAPlus, new_time_series_df
):
result = time_series_arima_plus_model.score(
Expand All @@ -160,9 +208,7 @@ def test_model_score_series(
)


def test_model_summary_series(
time_series_arima_plus_model: forecasting.ARIMAPlus, new_time_series_df
):
def test_arima_plus_summary_series(time_series_arima_plus_model: forecasting.ARIMAPlus):
result = time_series_arima_plus_model.summary()
assert result.shape == (1, 12)
assert all(column in result.columns for column in ARIMA_EVALUATE_OUTPUT_COL)