Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: Add ml.metrics.pairwise.paired_manhattan_distance #392

Merged
merged 1 commit into from
Feb 27, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 16 additions & 0 deletions bigframes/ml/metrics/pairwise.py
Original file line number Diff line number Diff line change
Expand Up @@ -34,3 +34,19 @@ def paired_cosine_distances(
paired_cosine_distances.__doc__ = inspect.getdoc(
vendored_metrics_pairwise.paired_cosine_distances
)


def paired_manhattan_distance(
X: Union[bpd.DataFrame, bpd.Series], Y: Union[bpd.DataFrame, bpd.Series]
) -> bpd.DataFrame:
X, Y = utils.convert_to_dataframe(X, Y)
if len(X.columns) != 1 or len(Y.columns) != 1:
raise ValueError("Inputs X and Y can only contain 1 column.")

base_bqml = core.BaseBqml(session=X._session)
return base_bqml.distance(X, Y, type="MANHATTAN", name="manhattan_distance")


paired_manhattan_distance.__doc__ = inspect.getdoc(
vendored_metrics_pairwise.paired_manhattan_distance
)
14 changes: 14 additions & 0 deletions tests/system/small/ml/test_metrics_pairwise.py
Original file line number Diff line number Diff line change
Expand Up @@ -33,3 +33,17 @@ def test_paired_cosine_distances():
pd.testing.assert_frame_equal(
result.to_pandas(), expected_pd_df, check_dtype=False, check_index_type=False
)


def test_paired_manhattan_distance():
x_col = [np.array([4.1, 0.5, 1.0])]
y_col = [np.array([3.0, 0.0, 2.5])]
X = bpd.read_pandas(pd.DataFrame({"X": x_col}))
Y = bpd.read_pandas(pd.DataFrame({"Y": y_col}))

result = metrics.pairwise.paired_manhattan_distance(X, Y)
expected_pd_df = pd.DataFrame({"X": x_col, "Y": y_col, "manhattan_distance": [3.1]})

pd.testing.assert_frame_equal(
result.to_pandas(), expected_pd_df, check_dtype=False, check_index_type=False
)
15 changes: 15 additions & 0 deletions third_party/bigframes_vendored/sklearn/metrics/pairwise.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,3 +24,18 @@ def paired_cosine_distances(X, Y) -> bpd.DataFrame:
bigframes.dataframe.DataFrame: DataFrame with columns of X, Y and cosine_distance
"""
raise NotImplementedError(constants.ABSTRACT_METHOD_ERROR_MESSAGE)


def paired_manhattan_distance(X, Y) -> bpd.DataFrame:
"""Compute the L1 distances between the vectors in X and Y.

Args:
X (Series or single column DataFrame of array of numeric type):
Input data.
Y (Series or single column DataFrame of array of numeric type):
Input data. X and Y are mapped by indexes, must have the same index.

Returns:
bigframes.dataframe.DataFrame: DataFrame with columns of X, Y and manhattan_distance
"""
raise NotImplementedError(constants.ABSTRACT_METHOD_ERROR_MESSAGE)