Skip to content

Commit

Permalink
Merge branch 'main' into arima_fix_huanc
Browse files Browse the repository at this point in the history
  • Loading branch information
Genesis929 authored Dec 23, 2024
2 parents 9539f5d + 0d84459 commit 78db385
Show file tree
Hide file tree
Showing 2 changed files with 40 additions and 0 deletions.
24 changes: 24 additions & 0 deletions third_party/bigframes_vendored/sklearn/decomposition/_pca.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,30 @@
class PCA(BaseEstimator, metaclass=ABCMeta):
"""Principal component analysis (PCA).
**Examples:**
>>> import bigframes.pandas as bpd
>>> from bigframes.ml.decomposition import PCA
>>> bpd.options.display.progress_bar = None
>>> X = bpd.DataFrame({"feat0": [-1, -2, -3, 1, 2, 3], "feat1": [-1, -1, -2, 1, 1, 2]})
>>> pca = PCA(n_components=2).fit(X)
>>> pca.predict(X) # doctest:+SKIP
principal_component_1 principal_component_2
0 -0.755243 0.157628
1 -1.05405 -0.141179
2 -1.809292 0.016449
3 0.755243 -0.157628
4 1.05405 0.141179
5 1.809292 -0.016449
<BLANKLINE>
[6 rows x 2 columns]
>>> pca.explained_variance_ratio_ # doctest:+SKIP
principal_component_id explained_variance_ratio
0 1 0.00901
1 0 0.99099
<BLANKLINE>
[2 rows x 2 columns]
Args:
n_components (int, float or None, default None):
Number of components to keep. If n_components is not set, all
Expand Down
16 changes: 16 additions & 0 deletions third_party/bigframes_vendored/sklearn/impute/_base.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,22 @@ class SimpleImputer(_BaseImputer):
Replace missing values using a descriptive statistic (e.g. mean, median, or
most frequent) along each column.
**Examples:**
>>> import bigframes.pandas as bpd
>>> from bigframes.ml.impute import SimpleImputer
>>> bpd.options.display.progress_bar = None
>>> X_train = bpd.DataFrame({"feat0": [7.0, 4.0, 10.0], "feat1": [2.0, None, 5.0], "feat2": [3.0, 6.0, 9.0]})
>>> imp_mean = SimpleImputer().fit(X_train)
>>> X_test = bpd.DataFrame({"feat0": [None, 4.0, 10.0], "feat1": [2.0, None, None], "feat2": [3.0, 6.0, 9.0]})
>>> imp_mean.transform(X_test)
imputer_feat0 imputer_feat1 imputer_feat2
0 7.0 2.0 3.0
1 4.0 3.5 6.0
2 10.0 3.5 9.0
<BLANKLINE>
[3 rows x 3 columns]
Args:
strategy ({'mean', 'median', 'most_frequent'}, default='mean'):
The imputation strategy. 'mean': replace missing values using the mean along
Expand Down

0 comments on commit 78db385

Please sign in to comment.