-
Notifications
You must be signed in to change notification settings - Fork 42
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'main' into remote_op_reproject
- Loading branch information
Showing
64 changed files
with
4,396 additions
and
327 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,194 @@ | ||
# Copyright 2024 Google LLC | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import typing | ||
from typing import Any, List, Optional, Tuple, Union | ||
|
||
import bigframes_vendored.constants as constants | ||
import bigframes_vendored.pandas.core.reshape.encoding as vendored_pandas_encoding | ||
import pandas | ||
|
||
from bigframes import operations | ||
from bigframes.core import blocks, expression | ||
from bigframes.dataframe import DataFrame | ||
from bigframes.series import Series | ||
|
||
|
||
def get_dummies( | ||
data: Union[DataFrame, Series], | ||
prefix: Union[List, dict, str, None] = None, | ||
prefix_sep: Union[List, dict, str, None] = "_", | ||
dummy_na: bool = False, | ||
columns: Optional[List] = None, | ||
drop_first: bool = False, | ||
dtype: Any = None, | ||
) -> DataFrame: | ||
# simplify input parameters into per-input-label lists | ||
# also raise errors for invalid parameters | ||
column_labels, prefixes, prefix_seps = _standardize_get_dummies_params( | ||
data, prefix, prefix_sep, columns, dtype | ||
) | ||
|
||
# combine prefixes into per-column-id list | ||
full_columns_prefixes, columns_ids = _determine_get_dummies_columns_from_labels( | ||
data, column_labels, prefix is not None, prefixes, prefix_seps | ||
) | ||
|
||
# run queries to compute unique values | ||
block = data._block | ||
max_unique_value = ( | ||
blocks._BQ_MAX_COLUMNS - len(block.value_columns) - len(block.index_columns) - 1 | ||
) // len(column_labels) | ||
columns_values = [ | ||
block._get_unique_values([col_id], max_unique_value) for col_id in columns_ids | ||
] | ||
|
||
# for each dummified column, add the content of the output columns via block operations | ||
intermediate_col_ids = [] | ||
for i in range(len(columns_values)): | ||
level = columns_values[i].get_level_values(0).sort_values().dropna() | ||
if drop_first: | ||
level = level[1:] | ||
column_label = full_columns_prefixes[i] | ||
column_id = columns_ids[i] | ||
block, new_intermediate_col_ids = _perform_get_dummies_block_operations( | ||
block, level, column_label, column_id, dummy_na | ||
) | ||
intermediate_col_ids.extend(new_intermediate_col_ids) | ||
|
||
# drop dummified columns (and the intermediate columns we added) | ||
block = block.drop_columns(columns_ids + intermediate_col_ids) | ||
return DataFrame(block) | ||
|
||
|
||
get_dummies.__doc__ = vendored_pandas_encoding.get_dummies.__doc__ | ||
|
||
|
||
def _standardize_get_dummies_params( | ||
data: Union[DataFrame, Series], | ||
prefix: Union[List, dict, str, None], | ||
prefix_sep: Union[List, dict, str, None], | ||
columns: Optional[List], | ||
dtype: Any, | ||
) -> Tuple[List, List[str], List[str]]: | ||
block = data._block | ||
|
||
if isinstance(data, Series): | ||
columns = [block.column_labels[0]] | ||
if columns is not None and not pandas.api.types.is_list_like(columns): | ||
raise TypeError("Input must be a list-like for parameter `columns`") | ||
if dtype is not None and dtype not in [ | ||
pandas.BooleanDtype, | ||
bool, | ||
"Boolean", | ||
"boolean", | ||
"bool", | ||
]: | ||
raise NotImplementedError( | ||
f"Only Boolean dtype is currently supported. {constants.FEEDBACK_LINK}" | ||
) | ||
|
||
if columns is None: | ||
default_dummy_types = [pandas.StringDtype, "string[pyarrow]"] | ||
columns = [] | ||
columns_set = set() | ||
for col_id in block.value_columns: | ||
label = block.col_id_to_label[col_id] | ||
if ( | ||
label not in columns_set | ||
and block.expr.get_column_type(col_id) in default_dummy_types | ||
): | ||
columns.append(label) | ||
columns_set.add(label) | ||
|
||
column_labels: List = typing.cast(List, columns) | ||
|
||
def parse_prefix_kwarg(kwarg, kwarg_name) -> Optional[List[str]]: | ||
if kwarg is None: | ||
return None | ||
if isinstance(kwarg, str): | ||
return [kwarg] * len(column_labels) | ||
if isinstance(kwarg, dict): | ||
return [kwarg[column] for column in column_labels] | ||
kwarg = typing.cast(List, kwarg) | ||
if pandas.api.types.is_list_like(kwarg) and len(kwarg) != len(column_labels): | ||
raise ValueError( | ||
f"Length of '{kwarg_name}' ({len(kwarg)}) did not match " | ||
f"the length of the columns being encoded ({len(column_labels)})." | ||
) | ||
if pandas.api.types.is_list_like(kwarg): | ||
return list(map(str, kwarg)) | ||
raise TypeError(f"{kwarg_name} kwarg must be a string, list, or dictionary") | ||
|
||
prefix_seps = parse_prefix_kwarg(prefix_sep or "_", "prefix_sep") | ||
prefix_seps = typing.cast(List, prefix_seps) | ||
prefixes = parse_prefix_kwarg(prefix, "prefix") | ||
if prefixes is None: | ||
prefixes = column_labels | ||
prefixes = typing.cast(List, prefixes) | ||
|
||
return column_labels, prefixes, prefix_seps | ||
|
||
|
||
def _determine_get_dummies_columns_from_labels( | ||
data: Union[DataFrame, Series], | ||
column_labels: List, | ||
prefix_given: bool, | ||
prefixes: List[str], | ||
prefix_seps: List[str], | ||
) -> Tuple[List[str], List[str]]: | ||
block = data._block | ||
|
||
columns_ids = [] | ||
columns_prefixes = [] | ||
for i in range(len(column_labels)): | ||
label = column_labels[i] | ||
empty_prefix = label is None or (isinstance(data, Series) and not prefix_given) | ||
full_prefix = "" if empty_prefix else prefixes[i] + prefix_seps[i] | ||
|
||
for col_id in block.label_to_col_id[label]: | ||
columns_ids.append(col_id) | ||
columns_prefixes.append(full_prefix) | ||
|
||
return columns_prefixes, columns_ids | ||
|
||
|
||
def _perform_get_dummies_block_operations( | ||
block: blocks.Block, | ||
level: pandas.Index, | ||
column_label: str, | ||
column_id: str, | ||
dummy_na: bool, | ||
) -> Tuple[blocks.Block, List[str]]: | ||
intermediate_col_ids = [] | ||
for value in level: | ||
new_column_label = f"{column_label}{value}" | ||
if column_label == "": | ||
new_column_label = value | ||
new_block, new_id = block.project_expr( | ||
operations.eq_op.as_expr(column_id, expression.const(value)) | ||
) | ||
intermediate_col_ids.append(new_id) | ||
block, _ = new_block.project_expr( | ||
operations.fillna_op.as_expr(new_id, expression.const(False)), | ||
label=new_column_label, | ||
) | ||
if dummy_na: | ||
# dummy column name for na depends on the dtype | ||
na_string = str(pandas.Index([None], dtype=level.dtype)[0]) | ||
new_column_label = f"{column_label}{na_string}" | ||
block, _ = block.apply_unary_op( | ||
column_id, operations.isnull_op, result_label=new_column_label | ||
) | ||
return block, intermediate_col_ids |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.