Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: Add timeout arguments to Endpoint.predict and Endpoint.explain #1094

Merged
merged 4 commits into from
Mar 21, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 14 additions & 2 deletions google/cloud/aiplatform/models.py
Original file line number Diff line number Diff line change
Expand Up @@ -1167,7 +1167,12 @@ def _instantiate_prediction_client(
prediction_client=True,
)

def predict(self, instances: List, parameters: Optional[Dict] = None) -> Prediction:
def predict(
self,
instances: List,
parameters: Optional[Dict] = None,
timeout: Optional[float] = None,
) -> Prediction:
"""Make a prediction against this Endpoint.

Args:
Expand All @@ -1190,13 +1195,17 @@ def predict(self, instances: List, parameters: Optional[Dict] = None) -> Predict
][google.cloud.aiplatform.v1beta1.DeployedModel.model]
[PredictSchemata's][google.cloud.aiplatform.v1beta1.Model.predict_schemata]
``parameters_schema_uri``.
timeout (float): Optional. The timeout for this request in seconds.
Returns:
prediction: Prediction with returned predictions and Model Id.
"""
self.wait()

prediction_response = self._prediction_client.predict(
endpoint=self._gca_resource.name, instances=instances, parameters=parameters
endpoint=self._gca_resource.name,
instances=instances,
parameters=parameters,
timeout=timeout,
)

return Prediction(
Expand All @@ -1212,6 +1221,7 @@ def explain(
instances: List[Dict],
parameters: Optional[Dict] = None,
deployed_model_id: Optional[str] = None,
timeout: Optional[float] = None,
) -> Prediction:
"""Make a prediction with explanations against this Endpoint.

Expand Down Expand Up @@ -1242,6 +1252,7 @@ def explain(
deployed_model_id (str):
Optional. If specified, this ExplainRequest will be served by the
chosen DeployedModel, overriding this Endpoint's traffic split.
timeout (float): Optional. The timeout for this request in seconds.
Returns:
prediction: Prediction with returned predictions, explanations and Model Id.
"""
Expand All @@ -1252,6 +1263,7 @@ def explain(
instances=instances,
parameters=parameters,
deployed_model_id=deployed_model_id,
timeout=timeout,
)

return Prediction(
Expand Down
5 changes: 3 additions & 2 deletions tests/system/aiplatform/test_e2e_tabular.py
Original file line number Diff line number Diff line change
Expand Up @@ -164,13 +164,14 @@ def test_end_to_end_tabular(self, shared_state):
is True
)

custom_prediction = custom_endpoint.predict([_INSTANCE])
custom_prediction = custom_endpoint.predict([_INSTANCE], timeout=180.0)

custom_batch_prediction_job.wait()

automl_endpoint.wait()
automl_prediction = automl_endpoint.predict(
[{k: str(v) for k, v in _INSTANCE.items()}] # Cast int values to strings
[{k: str(v) for k, v in _INSTANCE.items()}], # Cast int values to strings
timeout=180.0,
)

# Test lazy loading of Endpoint, check getter was never called after predict()
Expand Down
1 change: 1 addition & 0 deletions tests/unit/aiplatform/test_end_to_end.py
Original file line number Diff line number Diff line change
Expand Up @@ -174,6 +174,7 @@ def test_dataset_create_to_model_predict(
endpoint=test_endpoints._TEST_ENDPOINT_NAME,
instances=[[1.0, 2.0, 3.0], [1.0, 3.0, 4.0]],
parameters={"param": 3.0},
timeout=None,
)

expected_dataset = gca_dataset.Dataset(
Expand Down
38 changes: 38 additions & 0 deletions tests/unit/aiplatform/test_endpoints.py
Original file line number Diff line number Diff line change
Expand Up @@ -1162,6 +1162,7 @@ def test_predict(self, get_endpoint_mock, predict_client_predict_mock):
endpoint=_TEST_ENDPOINT_NAME,
instances=_TEST_INSTANCES,
parameters={"param": 3.0},
timeout=None,
)

def test_explain(self, get_endpoint_mock, predict_client_explain_mock):
Expand All @@ -1187,6 +1188,43 @@ def test_explain(self, get_endpoint_mock, predict_client_explain_mock):
instances=_TEST_INSTANCES,
parameters={"param": 3.0},
deployed_model_id=_TEST_MODEL_ID,
timeout=None,
)

@pytest.mark.usefixtures("get_endpoint_mock")
def test_predict_with_timeout(self, predict_client_predict_mock):

test_endpoint = models.Endpoint(_TEST_ID)

test_endpoint.predict(
instances=_TEST_INSTANCES, parameters={"param": 3.0}, timeout=10.0
)

predict_client_predict_mock.assert_called_once_with(
endpoint=_TEST_ENDPOINT_NAME,
instances=_TEST_INSTANCES,
parameters={"param": 3.0},
timeout=10.0,
)

@pytest.mark.usefixtures("get_endpoint_mock")
def test_explain_with_timeout(self, predict_client_explain_mock):

test_endpoint = models.Endpoint(_TEST_ID)

test_endpoint.explain(
instances=_TEST_INSTANCES,
parameters={"param": 3.0},
deployed_model_id=_TEST_MODEL_ID,
timeout=10.0,
)

predict_client_explain_mock.assert_called_once_with(
endpoint=_TEST_ENDPOINT_NAME,
instances=_TEST_INSTANCES,
parameters={"param": 3.0},
deployed_model_id=_TEST_MODEL_ID,
timeout=10.0,
)

def test_list_models(self, get_endpoint_with_models_mock):
Expand Down