home | boolean logic | integer arithmetic | channeling constraints | scheduling | Using the CP-SAT solver | Model manipulation | Troubleshooting | Python API |
---|
https://developers.google.com/optimization/
In all languages, the CpModel class is a thin wrapper around a protocol buffer object cp_model.proto.
Some functionalities require using the cp_model protobuf directly. To write code that manipulates this protobuf, one must understand how modeling objects (variables, constraints) are mapped onto the protobuf.
The fundamental idea is that the cp_model protobuf object contains a list of variables and a list of constraints. Constraints are built with variables and reference them using their indices in the list of variables.
In all languages, the IntVar
class has a method to query their index in the
model list of variables:
- C++:
var.index()
- Python:
var.Index()
- Java:
var.getIndex()
- C#:
var.Index
orvar.GetIndex()
- Go:
var.Index()
The implementation of Boolean literals differs across languages.
- C++: The
BoolVar
class is a separate class from theIntVar
class. ABoolVar
object can implicitly be cast to anIntVar
object. ABoolVar
object has two important methods:index()
andNot()
.Not()
returns anotherBoolVar
with a different index:b.Not().index() = -b.index() - 1
. - Python: There is no
BoolVar
class. A Boolean variable is defined as anIntVar
with a Boolean domain (0 or 1). TheNot()
method returns a different class. Both theIntVar
class and the negation class implementIndex()
andNot()
. - Java: There is no
BoolVar
class. A Boolean variable is defined as anIntVar
with a Boolean domain (0 or 1). Boolean variables and their negation implement theLiteral
interface. This interface definesgetIndex()
andnot()
methods. - C#: Boolean variables are defined as an
IntVar
with a Boolean domain (0 or 1). Boolean variables and their negations implement theILiteral
interface. This interface definesGetIndex()
andNot()
methods. - Go: The
BoolVar
class is a separate class from theIntVar
class. ABoolVar
object has two important methods:Not()
andIndex()
.Not()
returned anotherBoolVar
with a different index:b.Not.Index() = -b.Index() - 1
A solution is a partial assignment of variables to values that the search will try to stick to. It is meant to guide the search with external knowledge towards good solutions.
The CpModelProto
message has a solution_hint
field. This field is a
PartialVariableAssignment
message that contains two parallel vectors (variable
indices and hint values).
Adding solution hinting to a model implies filling these two fields. This is
done by the addHint
, AddHint
, or SetHint
methods.
Some remarks:
- A solution hint is not a hard constraint. The solver will try to use it in search for a while, and then gradually revert to its default search technique.
- It's OK to have an infeasible solution hint. It can still be helpful in some repair procedures, where one wants to identify a solution close to a previously violated state.
- Solution hints don't need to use all variables: partial solution hints are fine.
#!/usr/bin/env python3
"""Code sample that solves a model using solution hinting."""
from ortools.sat.python import cp_model
def solution_hinting_sample_sat():
"""Showcases solution hinting."""
# Creates the model.
model = cp_model.CpModel()
# Creates the variables.
num_vals = 3
x = model.new_int_var(0, num_vals - 1, "x")
y = model.new_int_var(0, num_vals - 1, "y")
z = model.new_int_var(0, num_vals - 1, "z")
# Creates the constraints.
model.add(x != y)
model.maximize(x + 2 * y + 3 * z)
# Solution hinting: x <- 1, y <- 2
model.add_hint(x, 1)
model.add_hint(y, 2)
# Creates a solver and solves.
solver = cp_model.CpSolver()
solution_printer = cp_model.VarArrayAndObjectiveSolutionPrinter([x, y, z])
status = solver.solve(model, solution_printer)
print(f"Status = {solver.status_name(status)}")
print(f"Number of solutions found: {solution_printer.solution_count}")
solution_hinting_sample_sat()
#include <stdlib.h>
#include "ortools/base/logging.h"
#include "ortools/sat/cp_model.h"
#include "ortools/sat/cp_model.pb.h"
#include "ortools/sat/cp_model_solver.h"
#include "ortools/sat/model.h"
#include "ortools/util/sorted_interval_list.h"
namespace operations_research {
namespace sat {
void SolutionHintingSampleSat() {
CpModelBuilder cp_model;
const Domain domain(0, 2);
const IntVar x = cp_model.NewIntVar(domain).WithName("x");
const IntVar y = cp_model.NewIntVar(domain).WithName("y");
const IntVar z = cp_model.NewIntVar(domain).WithName("z");
cp_model.AddNotEqual(x, y);
cp_model.Maximize(x + 2 * y + 3 * z);
// Solution hinting: x <- 1, y <- 2
cp_model.AddHint(x, 1);
cp_model.AddHint(y, 2);
Model model;
int num_solutions = 0;
model.Add(NewFeasibleSolutionObserver([&](const CpSolverResponse& r) {
LOG(INFO) << "Solution " << num_solutions;
LOG(INFO) << " x = " << SolutionIntegerValue(r, x);
LOG(INFO) << " y = " << SolutionIntegerValue(r, y);
LOG(INFO) << " z = " << SolutionIntegerValue(r, z);
num_solutions++;
}));
// Solving part.
const CpSolverResponse response = SolveCpModel(cp_model.Build(), &model);
LOG(INFO) << CpSolverResponseStats(response);
}
} // namespace sat
} // namespace operations_research
int main() {
operations_research::sat::SolutionHintingSampleSat();
return EXIT_SUCCESS;
}
package com.google.ortools.sat.samples;
import com.google.ortools.Loader;
import com.google.ortools.sat.CpModel;
import com.google.ortools.sat.CpSolver;
import com.google.ortools.sat.CpSolverSolutionCallback;
import com.google.ortools.sat.CpSolverStatus;
import com.google.ortools.sat.IntVar;
import com.google.ortools.sat.LinearExpr;
/** Minimal CP-SAT example to showcase calling the solver. */
public class SolutionHintingSampleSat {
public static void main(String[] args) throws Exception {
Loader.loadNativeLibraries();
// Create the model.
CpModel model = new CpModel();
// Create the variables.
int numVals = 3;
IntVar x = model.newIntVar(0, numVals - 1, "x");
IntVar y = model.newIntVar(0, numVals - 1, "y");
IntVar z = model.newIntVar(0, numVals - 1, "z");
// Create the constraints.
model.addDifferent(x, y);
model.maximize(LinearExpr.weightedSum(new IntVar[] {x, y, z}, new long[] {1, 2, 3}));
// Solution hinting: x <- 1, y <- 2
model.addHint(x, 1);
model.addHint(y, 2);
// Create a solver and solve the model.
CpSolver solver = new CpSolver();
VarArraySolutionPrinterWithObjective cb =
new VarArraySolutionPrinterWithObjective(new IntVar[] {x, y, z});
CpSolverStatus unusedStatus = solver.solve(model, cb);
}
static class VarArraySolutionPrinterWithObjective extends CpSolverSolutionCallback {
public VarArraySolutionPrinterWithObjective(IntVar[] variables) {
variableArray = variables;
}
@Override
public void onSolutionCallback() {
System.out.printf("Solution #%d: time = %.02f s%n", solutionCount, wallTime());
System.out.printf(" objective value = %f%n", objectiveValue());
for (IntVar v : variableArray) {
System.out.printf(" %s = %d%n", v.getName(), value(v));
}
solutionCount++;
}
private int solutionCount;
private final IntVar[] variableArray;
}
}
using System;
using Google.OrTools.Sat;
public class VarArraySolutionPrinter : CpSolverSolutionCallback
{
public VarArraySolutionPrinter(IntVar[] variables)
{
variables_ = variables;
}
public override void OnSolutionCallback()
{
{
Console.WriteLine(String.Format("Solution #{0}: time = {1:F2} s", solution_count_, WallTime()));
foreach (IntVar v in variables_)
{
Console.WriteLine(String.Format(" {0} = {1}", v.ToString(), Value(v)));
}
solution_count_++;
}
}
public int SolutionCount()
{
return solution_count_;
}
private int solution_count_;
private IntVar[] variables_;
}
public class SolutionHintingSampleSat
{
static void Main()
{
// Creates the model.
CpModel model = new CpModel();
// Creates the variables.
int num_vals = 3;
IntVar x = model.NewIntVar(0, num_vals - 1, "x");
IntVar y = model.NewIntVar(0, num_vals - 1, "y");
IntVar z = model.NewIntVar(0, num_vals - 1, "z");
// Creates the constraints.
model.Add(x != y);
// Solution hinting: x <- 1, y <- 2
model.AddHint(x, 1);
model.AddHint(y, 2);
model.Maximize(LinearExpr.WeightedSum(new IntVar[] { x, y, z }, new int[] { 1, 2, 3 }));
// Creates a solver and solves the model.
CpSolver solver = new CpSolver();
VarArraySolutionPrinter cb = new VarArraySolutionPrinter(new IntVar[] { x, y, z });
CpSolverStatus status = solver.Solve(model, cb);
}
}
// The solution_hinting_sample_sat command is an example of setting solution hints on the model.
package main
import (
"fmt"
"github.com/golang/glog"
cmpb "ortools/sat/cp_model_go_proto"
"ortools/sat/go/cpmodel"
)
func solutionHintingSampleSat() error {
model := cpmodel.NewCpModelBuilder()
domain := cpmodel.NewDomain(0, 2)
x := model.NewIntVarFromDomain(domain).WithName("x")
y := model.NewIntVarFromDomain(domain).WithName("y")
z := model.NewIntVarFromDomain(domain).WithName("z")
model.AddNotEqual(x, y)
model.Maximize(cpmodel.NewLinearExpr().AddWeightedSum([]cpmodel.LinearArgument{x, y, z}, []int64{1, 2, 3}))
// Solution hinting: x <- 1, y <- 2
hint := &cpmodel.Hint{Ints: map[cpmodel.IntVar]int64{x: 7}}
model.SetHint(hint)
m, err := model.Model()
if err != nil {
return fmt.Errorf("failed to instantiate the CP model: %w", err)
}
response, err := cpmodel.SolveCpModel(m)
if err != nil {
return fmt.Errorf("failed to solve the model: %w", err)
}
fmt.Printf("Status: %v\n", response.GetStatus())
if response.GetStatus() == cmpb.CpSolverStatus_OPTIMAL {
fmt.Printf(" x = %v\n", cpmodel.SolutionIntegerValue(response, x))
fmt.Printf(" y = %v\n", cpmodel.SolutionIntegerValue(response, y))
fmt.Printf(" z = %v\n", cpmodel.SolutionIntegerValue(response, z))
}
return nil
}
func main() {
if err := solutionHintingSampleSat(); err != nil {
glog.Exitf("solutionHintingSampleSat returned with error: %v", err)
}
}
The CpModel classes supports deep copy from a previous model. This is useful to solve variations of a base model. The trick is to recover the copies of the variables in the original model to be able to manipulate the new model. This is illustrated in the following examples.
#!/usr/bin/env python3
"""Showcases deep copying of a model."""
from ortools.sat.python import cp_model
def clone_model_sample_sat():
"""Showcases cloning a model."""
# Creates the model.
model = cp_model.CpModel()
# Creates the variables.
num_vals = 3
x = model.new_int_var(0, num_vals - 1, "x")
y = model.new_int_var(0, num_vals - 1, "y")
z = model.new_int_var(0, num_vals - 1, "z")
# Creates the constraints.
model.add(x != y)
model.maximize(x + 2 * y + 3 * z)
# Creates a solver and solves.
solver = cp_model.CpSolver()
status = solver.solve(model)
if status == cp_model.OPTIMAL:
print("Optimal value of the original model: {}".format(solver.objective_value))
# Clones the model.
copy = model.clone()
copy_x = copy.get_int_var_from_proto_index(x.index)
copy_y = copy.get_int_var_from_proto_index(y.index)
copy.add(copy_x + copy_y <= 1)
status = solver.solve(copy)
if status == cp_model.OPTIMAL:
print("Optimal value of the modified model: {}".format(solver.objective_value))
clone_model_sample_sat()
#include <stdlib.h>
#include "ortools/base/logging.h"
#include "ortools/sat/cp_model.h"
#include "ortools/sat/cp_model.pb.h"
#include "ortools/sat/cp_model_solver.h"
#include "ortools/util/sorted_interval_list.h"
namespace operations_research {
namespace sat {
void CloneModelSampleSat() {
CpModelBuilder cp_model;
const Domain domain(0, 2);
const IntVar x = cp_model.NewIntVar(domain).WithName("x");
const IntVar y = cp_model.NewIntVar(domain).WithName("y");
const IntVar z = cp_model.NewIntVar(domain).WithName("z");
cp_model.AddNotEqual(x, y);
cp_model.Maximize(x + 2 * y + 3 * z);
const CpSolverResponse initial_response = Solve(cp_model.Build());
LOG(INFO) << "Optimal value of the original model: "
<< initial_response.objective_value();
CpModelBuilder copy = cp_model.Clone();
// Add new constraint: copy_of_x + copy_of_y == 1.
IntVar copy_of_x = copy.GetIntVarFromProtoIndex(x.index());
IntVar copy_of_y = copy.GetIntVarFromProtoIndex(y.index());
copy.AddLessOrEqual(copy_of_x + copy_of_y, 1);
const CpSolverResponse modified_response = Solve(copy.Build());
LOG(INFO) << "Optimal value of the modified model: "
<< modified_response.objective_value();
}
} // namespace sat
} // namespace operations_research
int main() {
operations_research::sat::CloneModelSampleSat();
return EXIT_SUCCESS;
}
package com.google.ortools.sat.samples;
import com.google.ortools.Loader;
import com.google.ortools.sat.CpModel;
import com.google.ortools.sat.CpSolver;
import com.google.ortools.sat.CpSolverStatus;
import com.google.ortools.sat.IntVar;
import com.google.ortools.sat.LinearExpr;
/** Minimal CP-SAT example to showcase cloning a model. */
public final class CloneModelSampleSat {
public static void main(String[] args) throws Exception {
Loader.loadNativeLibraries();
// Create the model.
CpModel model = new CpModel();
// Create the variables.
int numVals = 3;
IntVar x = model.newIntVar(0, numVals - 1, "x");
IntVar y = model.newIntVar(0, numVals - 1, "y");
IntVar z = model.newIntVar(0, numVals - 1, "z");
// Create the constraints.
model.addDifferent(x, y);
model.maximize(LinearExpr.newBuilder().add(x).addTerm(y, 2).addTerm(z, 3).build());
// Create a solver and solve the model.
CpSolver solver = new CpSolver();
CpSolverStatus unusedStatus = solver.solve(model);
System.out.printf("Optimal value of the original model: %f\n", solver.objectiveValue());
CpModel copy = model.getClone();
// Add new constraint: copy_of_x + copy_of_y == 1.
IntVar copyOfX = copy.getIntVarFromProtoIndex(x.getIndex());
IntVar copyOfY = copy.getIntVarFromProtoIndex(y.getIndex());
copy.addLessOrEqual(LinearExpr.newBuilder().add(copyOfX).add(copyOfY).build(), 1);
unusedStatus = solver.solve(copy);
System.out.printf("Optimal value of the cloned model: %f\n", solver.objectiveValue());
}
private CloneModelSampleSat() {}
}