Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[nnx] fix demo notebook #3744

Merged
merged 1 commit into from
Mar 18, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
124 changes: 65 additions & 59 deletions flax/experimental/nnx/docs/demo.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -30,7 +30,7 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 7,
"id": "d99b73af",
"metadata": {
"outputId": "d8ef66d5-6866-4d5c-94c2-d22512bfe718"
Expand All @@ -43,20 +43,19 @@
"model = MLP(\n",
" blocks=[Block(\n",
" linear=Linear(\n",
" in_features=4,\n",
" out_features=4,\n",
" use_bias=True,\n",
" dtype=None,\n",
" param_dtype=<class 'jax.numpy.float32'>,\n",
" precision=None,\n",
" kernel_init=<function variance_scaling.<locals>.init at 0x7f8aa7e24670>,\n",
" bias_init=<function zeros at 0x7f8b4a8d55a0>,\n",
" dot_general=<function dot_general at 0x7f8b4aed8f70>\n",
" ),\n",
" in_features=4,\n",
" out_features=4,\n",
" use_bias=True,\n",
" dtype=None,\n",
" param_dtype=<class 'jax.numpy.float32'>,\n",
" precision=None,\n",
" kernel_init=<function variance_scaling.<locals>.init at 0x28ae86dc0>,\n",
" bias_init=<function zeros at 0x122d39f70>,\n",
" dot_general=<function dot_general at 0x1218459d0>\n",
" ),\n",
" bn=BatchNorm(\n",
" num_features=4,\n",
" use_running_average=None,\n",
" \n",
" num_features=4,\n",
" \n",
"...\n"
]
}
Expand All @@ -65,15 +64,11 @@
"\n",
"class Block(nnx.Module):\n",
" def __init__(self, din, dout, *, rngs):\n",
" self.linear = nnx.Linear(din, dout, rngs=rngs,\n",
" kernel_init=nnx.with_partitioning(nnx.initializers.lecun_normal() , ('data', 'mp')))\n",
" self.linear = nnx.Linear(din, dout, rngs=rngs)\n",
" self.bn = nnx.BatchNorm(dout, rngs=rngs)\n",
"\n",
" def __call__(self, x, *, train: bool):\n",
" x = self.linear(x)\n",
" x = self.bn(x, use_running_average=not train)\n",
" x = nnx.relu(x)\n",
" return x\n",
" def __call__(self, x):\n",
" return nnx.relu(self.bn(self.linear(x)))\n",
"\n",
"\n",
"class MLP(nnx.Module):\n",
Expand All @@ -83,17 +78,18 @@
" ]\n",
" self.count = Count(0) # stateful variables are defined as attributes\n",
"\n",
" def __call__(self, x, *, train: bool):\n",
" self.count += 1 # in-place stateful updates\n",
" def __call__(self, x):\n",
" self.count.value += 1 # in-place stateful updates\n",
" for block in self.blocks:\n",
" x = block(x, train=train)\n",
" x = block(x)\n",
" return x\n",
"\n",
"class Count(nnx.Variable): # custom Variable types define the \"collections\"\n",
" pass\n",
"\n",
"model = MLP(5, 4, rngs=nnx.Rngs(0)) # no special `init` method\n",
"y = model(jnp.ones((2, 4)), train=False) # call methods directly\n",
"model.set_attributes(deterministic=False, use_running_average=False) # set flags\n",
"y = model(jnp.ones((2, 4))) # call methods directly\n",
"\n",
"print(f'{model = }'[:500] + '\\n...')"
]
Expand All @@ -108,7 +104,7 @@
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": 9,
"id": "6f278ec4",
"metadata": {
"outputId": "10a46b0f-2993-4677-c26d-36a4ddf33449"
Expand All @@ -118,11 +114,15 @@
"name": "stdout",
"output_type": "stream",
"text": [
"model.count = 1\n",
"model.blocks[0].linear.kernel = Array([[ 0.4541134 , -0.5264871 , -0.36505395, -0.57566494],\n",
" [ 0.3880299 , 0.56555384, 0.48706698, 0.22677685],\n",
" [-0.9015692 , 0.24465257, -0.58447087, 0.18421973],\n",
" [-0.06992681, -0.64693826, 0.20232539, 1.1200054 ]], dtype=float32)\n"
"model.count = Count(\n",
" raw_value=1\n",
")\n",
"model.blocks[0].linear.kernel = Param(\n",
" raw_value=Array([[-0.80345297, -0.34071913, -0.9408296 , 0.01005968],\n",
" [ 0.26146442, 1.1247735 , 0.54563737, -0.374164 ],\n",
" [ 1.0281805 , -0.6798804 , -0.1488401 , 0.05694951],\n",
" [-0.44308168, -0.60587114, 0.434087 , -0.40541083]], dtype=float32)\n",
")\n"
]
}
],
Expand All @@ -142,7 +142,7 @@
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": 10,
"id": "96f61108",
"metadata": {
"outputId": "e6f86be8-3537-4c48-f471-316ee0fb6c45"
Expand All @@ -160,12 +160,12 @@
"# Module sharing\n",
"model.blocks[1] = model.blocks[3]\n",
"# Weight tying\n",
"model.blocks[0].linear.variables.kernel = model.blocks[-1].linear.variables.kernel\n",
"model.blocks[0].linear.kernel = model.blocks[-1].linear.kernel\n",
"# Monkey patching\n",
"def my_optimized_layer(x, *, train: bool): return x\n",
"def my_optimized_layer(x): return x\n",
"model.blocks[2] = my_optimized_layer\n",
"\n",
"y = model(jnp.ones((2, 4)), train=False) # still works\n",
"y = model(jnp.ones((2, 4))) # still works\n",
"print(f'{y.shape = }')"
]
},
Expand All @@ -179,7 +179,7 @@
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": 11,
"id": "c166dcc7",
"metadata": {
"outputId": "9a3f378b-739e-4f45-9968-574651200ede"
Expand All @@ -193,14 +193,15 @@
" 'blocks': {\n",
" '0': {\n",
" 'linear': {\n",
" 'kernel': Array([[-0.33674937, 1.0543901 , -0.524824 , 0.16665861],\n",
" [ 0.6607222 , 0.07498633, -0.165967 , -0.36928803],\n",
" [-0.7086948 , -0.5809104 , 0.2939486 , -0.6660238 ],\n",
" [-0.13412867, 0.09832543, 0.77024055, -0.2405255 ]], dtype=float32),\n",
" 'bias': Array([0., 0., 0., 0.], dtype=float32)\n",
" },\n",
" 'bn': {\n",
" 'mean': Array([0., 0., 0., 0.], dtype=float32),\n",
" 'kernel': Param(\n",
" raw_value=Array([[-0.33095378, 0.67149884, 0.33700302, 0.30972847],\n",
" [ 0.8662822 , -0.11225506, -1.0820619 , -0.9906892 ],\n",
" [ 0.88298297, -0.2143851 , 0.48143268, 0.6474548 ],\n",
" [-0.7710582 , 0.3372276 , 0.15487202, 0.6219269 ]], dtype=float32)\n",
" ),\n",
" 'bias': Param(\n",
" raw_value=Array([0., 0., 0., 0.], dtype=float32)\n",
" \n",
"...\n",
"\n",
"static = GraphDef(\n",
Expand All @@ -227,13 +228,13 @@
"# state is a dictionary-like JAX pytree\n",
"print(f'{state = }'[:500] + '\\n...')\n",
"\n",
"# static is also a JAX pytree, but containing no data, just metadata\n",
"# static is also a JAX pytree, but just metadata\n",
"print(f'\\n{static = }'[:300] + '\\n...')"
]
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": 12,
"id": "9f03e3af",
"metadata": {
"outputId": "0007d357-152a-449e-bcb9-b1b5a91d2d8d"
Expand All @@ -244,7 +245,7 @@
"output_type": "stream",
"text": [
"y.shape = (2, 4)\n",
"model.count = Array(3, dtype=int32, weak_type=True)\n"
"model.count.value = Array(3, dtype=int32, weak_type=True)\n"
]
}
],
Expand All @@ -254,7 +255,7 @@
"@jax.jit\n",
"def forward(static: nnx.GraphDef, state: nnx.State, x: jax.Array):\n",
" model = static.merge(state)\n",
" y = model(x, train=True)\n",
" y = model(x)\n",
" state, _ = model.split()\n",
" return y, state\n",
"\n",
Expand All @@ -264,7 +265,7 @@
"model.update(state)\n",
"\n",
"print(f'{y.shape = }')\n",
"print(f'{model.count = }')"
"print(f'{model.count.value = }')"
]
},
{
Expand Down Expand Up @@ -303,7 +304,7 @@
},
{
"cell_type": "code",
"execution_count": 8,
"execution_count": 14,
"id": "2461bfe8",
"metadata": {},
"outputs": [
Expand All @@ -312,40 +313,45 @@
"output_type": "stream",
"text": [
"y.shape = (2, 4)\n",
"parent.model.count = Array(5, dtype=int32, weak_type=True)\n"
"parent.model.count.value = Array(4, dtype=int32, weak_type=True)\n"
]
}
],
"source": [
"class Parent(nnx.Module):\n",
"\n",
" def __init__(self, model: MLP):\n",
" self.model = model\n",
"\n",
" def __call__(self, x, *, train: bool):\n",
"\n",
" def __call__(self, x):\n",
" params, batch_stats, counts, static = self.model.split(nnx.Param, nnx.BatchStat, Count)\n",
"\n",
" @jax.jit\n",
" def forward(static: nnx.GraphDef, params, batch_stats, counts, x: jax.Array):\n",
" model = static.merge(params, batch_stats, counts)\n",
" y = model(x, train=True)\n",
" y = model(x)\n",
" params, batch_stats, counts, _ = model.split(nnx.Param, nnx.BatchStat, Count)\n",
" return y, params, batch_stats, counts\n",
"\n",
" y, params, batch_stats, counts = forward(static, params, batch_stats, counts, x)\n",
"\n",
" self.model.update(params, batch_stats, counts)\n",
"\n",
" return y\n",
"\n",
"parent = Parent(model)\n",
"\n",
"y = parent(jnp.ones((2, 4)), train=False)\n",
"y = parent(jnp.ones((2, 4)))\n",
"\n",
"print(f'{y.shape = }')\n",
"print(f'{parent.model.count = }')"
"print(f'{parent.model.count.value = }')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2e340bcb",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
Expand All @@ -362,7 +368,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
"version": "3.9.18"
}
},
"nbformat": 4,
Expand Down
Loading
Loading