-
Notifications
You must be signed in to change notification settings - Fork 648
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #4354 from google:nnx-data-parallel-example
PiperOrigin-RevId: 694655493
- Loading branch information
Showing
1 changed file
with
102 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,102 @@ | ||
# Copyright 2024 The Flax Authors. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import os | ||
os.environ['XLA_FLAGS'] = '--xla_force_host_platform_device_count=8' | ||
|
||
import jax | ||
import jax.numpy as jnp | ||
import numpy as np | ||
import optax | ||
from flax import nnx | ||
from jax.experimental import mesh_utils | ||
import matplotlib.pyplot as plt | ||
|
||
# create a mesh + shardings | ||
num_devices = jax.local_device_count() | ||
mesh = jax.sharding.Mesh( | ||
mesh_utils.create_device_mesh((num_devices,)), ('data',) | ||
) | ||
model_sharding = jax.NamedSharding(mesh, jax.sharding.PartitionSpec()) | ||
data_sharding = jax.NamedSharding(mesh, jax.sharding.PartitionSpec('data')) | ||
|
||
|
||
# create model | ||
class MLP(nnx.Module): | ||
def __init__(self, din, dmid, dout, *, rngs: nnx.Rngs): | ||
self.linear1 = nnx.Linear(din, dmid, rngs=rngs) | ||
self.linear2 = nnx.Linear(dmid, dout, rngs=rngs) | ||
|
||
def __call__(self, x): | ||
return self.linear2(nnx.relu(self.linear1(x))) | ||
|
||
|
||
model = MLP(1, 64, 1, rngs=nnx.Rngs(0)) | ||
optimizer = nnx.Optimizer(model, optax.adamw(1e-2)) | ||
|
||
# replicate state | ||
state = nnx.state((model, optimizer)) | ||
state = jax.device_put(state, model_sharding) | ||
nnx.update((model, optimizer), state) | ||
|
||
# visualize model sharding | ||
print('model sharding') | ||
jax.debug.visualize_array_sharding(model.linear1.kernel.value) | ||
|
||
|
||
@nnx.jit | ||
def train_step(model: MLP, optimizer: nnx.Optimizer, x, y): | ||
def loss_fn(model: MLP): | ||
y_pred = model(x) | ||
return jnp.mean((y - y_pred) ** 2) | ||
|
||
loss, grads = nnx.value_and_grad(loss_fn)(model) | ||
optimizer.update(grads) | ||
return loss | ||
|
||
|
||
def dataset(steps, batch_size): | ||
for _ in range(steps): | ||
x = np.random.uniform(-2, 2, size=(batch_size, 1)) | ||
y = 0.8 * x**2 + 0.1 + np.random.normal(0, 0.1, size=x.shape) | ||
yield x, y | ||
|
||
|
||
for step, (x, y) in enumerate(dataset(1000, 16)): | ||
# shard data | ||
x, y = jax.device_put((x, y), data_sharding) | ||
# train | ||
loss = train_step(model, optimizer, x, y) | ||
|
||
if step == 0: | ||
print('data sharding') | ||
jax.debug.visualize_array_sharding(x) | ||
|
||
if step % 100 == 0: | ||
print(f'step={step}, loss={loss}') | ||
|
||
# dereplicate state | ||
state = nnx.state((model, optimizer)) | ||
state = jax.device_get(state) | ||
nnx.update((model, optimizer), state) | ||
|
||
X, Y = next(dataset(1, 1000)) | ||
x_range = np.linspace(X.min(), X.max(), 100)[:, None] | ||
y_pred = model(x_range) | ||
|
||
# plot | ||
plt.scatter(X, Y, label='data') | ||
plt.plot(x_range, y_pred, color='black', label='model') | ||
plt.legend() | ||
plt.show() |