mature tRNA sequencing
Use the following command to create a conda environment with the essential packages used by matRseq.
conda env create --file=matRseq.yaml
conda activate matRseq
The metadata file resides in the working directory and lists the required information for each sample. For example:
Sample.name | Sample.prefix | R1 | R2 | sample.type | cell.line | sample.rep |
---|---|---|---|---|---|---|
SW480_LVM2_ribo_r1 | SW480_LVM2_ribo_6_S15 | SW480_LVM2_ribo_6_S15_R1_001.fastq.gz | SW480_LVM2_ribo_6_S15_R2_001.fastq.gz | ribo | SW480-Par | 1 |
SW480_LVM2_ribo_r2 | SW480_LVM2_ribo_7_S16 | SW480_LVM2_ribo_7_S16_R1_001.fastq.gz | SW480_LVM2_ribo_7_S16_R2_001.fastq.gz | ribo | SW480-Par | 2 |
SW480_P_total_r1 | SW480_P_total_6_S9 | SW480_P_total_6_S9_R1_001.fastq.gz | SW480_P_total_6_S9_R2_001.fastq.gz total | SW480-LvM2 | 1 | |
SW480_P_total_r2 | SW480_P_total_7_S10 | SW480_P_total_7_S10_R1_001.fastq.gz | SW480_P_total_7_S10_R2_001.fastq.gz | total | SW480-LvM2 | 2 |
For bi-variate analysis the following command will run the analysis:
python matRseq.py --runMode metadata.txt 'sample.type~cell.line' output.txt
and for uni-variate analysis the following command will run the analysis(reference must be specified):
python matRseq.py --runMode --ref=SW480Par metadata_univariate.txt '~cell.line' output.txt
Run python matRseq.py
for usage.
The following are the options:
--runMode
or-r
vs--printMode
or-p
:--printMode
prints all the commands that are run-a
or--aligner
: Choose aligner package (default is BWA)-l
or--read
: R1, R2, both; Use both R1 and R2 (miSeq) as opposed to R2 (10X). Default is R2--hasUMI
vs--noUMI
: Whether reads contain UMI or not (Default is hasUMI)--paired
vs--single
: if the reads are paired end. (Default is paired)--ref
: The sample that is the reference in univariate analysis.