Skip to content

A tutorial illustrating how to estimate linear mixed models using Julia in R.

Notifications You must be signed in to change notification settings

ginettelafit/MixedModelswithRandJulia

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

18 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Estimating Linear Mixed-Models with Julia using R

A tutorial illustrating how to estimate linear mixed models using Julia in R.

Overview

In this tutorial, I will show how to estimate linear-mixed models with Julia using R. I am assuming that the necessary libraries are already installed in Julia. Therefore, you should first install the following packages in Julia: RCall, MixedModels, and JellyMe4. More information can be found here and here.

Outline

Prelim - Installing libraries used in this script (whenever is necessary).

# This code chunk simply makes sure that all the libraries used here are installed.
packages <- c("lme4", "JuliaCall")
if ( length(missing_pkgs <- setdiff(packages, rownames(installed.packages()))) > 0) {
  message("Installing missing package(s): ", paste(missing_pkgs, collapse = ", "))
  install.packages(missing_pkgs)
}

Prelim - Loading libraries used in this script.

It is necessary to use the function dyn.load to load foreign function interfaces. Here, it is necessary to set the folder with the library libopenlibm.DLL.

dyn.load("C:/Users/AppData/Local/Programs/Julia 1.5.3/bin/libopenlibm.DLL")

library(JuliaCall)
library(lme4)

Prelim - Setting Julia.

Next, we need to call Julia. In some cases, it will only be necessary to set up Julia in R by using julia_setup(). In my case, I need to specify the folder in which Julia is located.

julia.dir = julia_setup(JULIA_HOME = "C:\\Users\\AppData\\Local\\Programs\\Julia 1.5.3\\bin")

1. Estimate linear-mixed model.

Calling Julia library MixedModels

First, we need to load the Julia library MixedModels using julia.dir and the function library:

julia.dir$library("MixedModels")

Model Specification.

As an illustration, I will use the sleepstudy dataset from the lme4 library. To estimate a linear mixed effect model using Julia the variables defining the clustering (i.e., Subject) structure should be defined as a factor.

data(sleepstudy)
sleepstudy$Subject = as.factor(sleepstudy$Subject)

Second, we need to call the function in R to Julia, this can be done using the Julia function assign. With this function we call the data and the formula that specify the linear mixed-model we are interested in estimate:

julia.dir$assign("sleepstudy", sleepstudy)
julia.dir$assign("form", formula(Reaction ~ Days + (Days | Subject)))

Model Estimation.

Finally, we estimate the model. To estimate the model we need to use the function eval. The first argument of the function includes the command to fit the linear mixed-model using the previously specified formula and dataset. The second argument states that the function will return the estimated results. Have in mind that the first time the following lines are run might take a few seconds. However, for the following analyses, the function will run faster. This is especially useful if you are planning to conduct simulations.

results = julia.dir$eval("res = fit(LinearMixedModel, form, sleepstudy)",need_return = c("Julia"))

# Get summary 
julia.dir$eval("res")

## Julia Object of type LinearMixedModel{Float64}.
## Linear mixed model fit by maximum likelihood
##  Reaction ~ 1 + Days + (1 + Days | Subject)
##    logLik   -2 logLik     AIC       AICc        BIC    
##   -875.9697  1751.9393  1763.9393  1764.4249  1783.0971
## 
## Variance components:
##             Column    Variance Std.Dev.   Corr.
## Subject  (Intercept)  565.51067 23.78047
##          Days          32.68212  5.71683 +0.08
## Residual              654.94145 25.59182
##  Number of obs: 180; levels of grouping factors: 18
## 
##   Fixed-effects parameters:
## --------------------------------------------------
##                 Coef.  Std. Error      z  Pr(>|z|)
## --------------------------------------------------
## (Intercept)  251.405      6.63226  37.91    <1e-99
## Days          10.4673     1.50224   6.97    <1e-11
## --------------------------------------------------

# Get the estimated fixed effects
beta.fixed = julia_eval("coef(res)")
beta.fixed 

## [1] 251.40510  10.46729

# Get the estimated random effects
beta.random = t(julia_eval("ranef(res)")[1])
beta.random

##             [,1]        [,2]
##  [1,]   2.815819   9.0755116
##  [2,] -40.048442  -8.6440794
##  [3,] -38.433064  -5.5133980
##  [4,]  22.832112  -4.6587173
##  [5,]  21.549840  -2.9444928
##  [6,]   8.815541  -0.2352007
##  [7,]  16.441908  -0.1588087
##  [8,]  -6.996671   1.0327272
##  [9,]  -1.037588 -10.5994157
## [10,]  34.666294   8.6323845
## [11,] -24.558026   1.0643762
## [12,] -12.334467   6.4716750
## [13,]   4.273998  -2.9553318
## [14,]  20.622181   3.5617128
## [15,]   3.258535   0.8717108
## [16,] -24.710141   4.6597008
## [17,]   0.723262  -0.9710526
## [18,]  12.118908   1.3106981

Getting the summary of the linear-mixed models of Julia using R.

To get a summary in the same form as lme4, you can use the library JellyMe4. I am using the code available here. First, we need to compile the function jmer:

jmer <- function(formula, data, REML=TRUE){
    # to simplify maintainence here (in the hopes of turning this into a real
    # package), I'm depending on JellyMe4, which copies the dataframe back with
    # the model this is of course what you want if you're primarily working in
    # Julia and just using RCall for the the R ecosystem of extras for
    # MixedModels, but it does create an unnecessary copy if you're starting
    # with your data in R.
    #
    # Also, this means we suffer/benefit from the same level of compatibility in
    # the formula as in JellyMe4, i.e. currently no support for the ||

    jf <- deparse(formula,width = 500)
    jreml = ifelse(REML, "true", "false")

    julia_assign("jmerdat",data)
    julia_command(sprintf("jmermod = fit!(LinearMixedModel(@formula(%s),jmerdat),REML=%s);",jf,jreml))

    julia_eval("robject(:lmerMod, Tuple([jmermod,jmerdat]));",need_return="R")
}

We can estimate the linear mixed-model using Julia on R, and gettting the summary as an lmer object as follow:

julia.dir$library("JellyMe4")
fit = jmer(formula(Reaction ~ Days + (Days | Subject)), sleepstudy, REML=TRUE)
summary(fit)

## Linear mixed model fit by REML ['lmerMod']
## Formula: Reaction ~ 1 + Days + (1 + Days | Subject)
##    Data: jellyme4_data
## Control: lmerControl(optimizer = "nloptwrap", optCtrl = list(maxeval = 1),  
##     calc.derivs = FALSE, check.nobs.vs.nRE = "warning")
## 
## REML criterion at convergence: 1743.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9536 -0.4634  0.0231  0.4634  5.1793 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev. Corr
##  Subject  (Intercept) 612.10   24.741       
##           Days         35.07    5.922   0.07
##  Residual             654.94   25.592       
## Number of obs: 180, groups:  Subject, 18
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept)  251.405      6.825  36.838
## Days          10.467      1.546   6.771
## 
## Correlation of Fixed Effects:
##      (Intr)
## Days -0.138
## optimizer (LN_BOBYQA) convergence code: 5 (fit with MixedModels.jl)

2. Conclusion.

This tutorial will hopefully be updated soon.

3. Acknowledgment.

I would like to thank Kristof Meers for suggesting me to use Julia and for kindly answer some silly and not so silly questions.

About

A tutorial illustrating how to estimate linear mixed models using Julia in R.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published