Skip to content

Commit

Permalink
CUDA: fix tensor core logic for Pascal and HIP (#4682)
Browse files Browse the repository at this point in the history
  • Loading branch information
JohannesGaessler authored Dec 29, 2023
1 parent 0235b9b commit a20f3c7
Showing 1 changed file with 39 additions and 33 deletions.
72 changes: 39 additions & 33 deletions ggml-cuda.cu
Original file line number Diff line number Diff line change
Expand Up @@ -123,24 +123,6 @@

#define GGML_CUDA_MAX_NODES 8192

// define this if you want to always fallback to MMQ kernels and not use cuBLAS for matrix multiplication
// on modern hardware, using cuBLAS is recommended as it utilizes F16 tensor cores which are very performant
// for large computational tasks. the drawback is that this requires some extra amount of VRAM:
// - 7B quantum model: +100-200 MB
// - 13B quantum model: +200-400 MB
//
//#define GGML_CUDA_FORCE_MMQ

// TODO: improve this to be correct for more hardware
// for example, currently fails for GeForce GTX 1660 which is TURING arch (> VOLTA) but does not have tensor cores
// probably other such cases, and not sure what happens on AMD hardware
#if !defined(GGML_CUDA_FORCE_MMQ)
#define CUDA_USE_TENSOR_CORES
#endif

// max batch size to use MMQ kernels when tensor cores are available
#define MMQ_MAX_BATCH_SIZE 32

#if defined(GGML_USE_HIPBLAS)
#define __CUDA_ARCH__ 1300

Expand Down Expand Up @@ -207,6 +189,23 @@ static __device__ __forceinline__ int __dp4a(const int a, const int b, int c) {
}
#endif // defined(GGML_USE_HIPBLAS)

// define this if you want to always fallback to MMQ kernels and not use cuBLAS for matrix multiplication
// on modern hardware, using cuBLAS is recommended as it utilizes F16 tensor cores which are very performant
// for large computational tasks. the drawback is that this requires some extra amount of VRAM:
// - 7B quantum model: +100-200 MB
// - 13B quantum model: +200-400 MB
//
//#define GGML_CUDA_FORCE_MMQ

// TODO: improve this to be correct for more hardware
// for example, currently fails for GeForce GTX 1660 which is TURING arch (> VOLTA) but does not have tensor cores
#if !defined(GGML_CUDA_FORCE_MMQ) && (!defined(GGML_USE_HIPBLAS) || defined(RDNA3))
#define CUDA_USE_TENSOR_CORES
#endif

// max batch size to use MMQ kernels when tensor cores are available
#define MMQ_MAX_BATCH_SIZE 32

#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
Expand Down Expand Up @@ -8661,11 +8660,26 @@ static void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1
}
}

#ifdef CUDA_USE_TENSOR_CORES
const bool use_tensor_cores = true;
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
const bool fp16_performance_good = true;

#ifdef RDNA3
const bool use_mul_mat_q = false;
#else
const bool use_tensor_cores = false;
#endif
const bool use_mul_mat_q = true;
#endif // RDNA3

#else

const bool fp16_performance_good = min_compute_capability >= CC_VOLTA;
bool use_mul_mat_q = min_compute_capability >= MIN_CC_DP4A && ggml_is_quantized(src0->type);
#ifdef CUDA_USE_TENSOR_CORES
// when tensor cores are available, use them for large batch size
// ref: https://github.com/ggerganov/llama.cpp/pull/3776
use_mul_mat_q = use_mul_mat_q && !(fp16_performance_good && src1->ne[1] > MMQ_MAX_BATCH_SIZE);
#endif // CUDA_USE_TENSOR_CORES

#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)

// debug helpers
//printf("src0: %8d %8d %8d %8d\n", src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3]);
Expand All @@ -8675,13 +8689,13 @@ static void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1
//printf("src0 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src0), ggml_is_transposed(src0), ggml_type_name(src0->type), src0->name);
//printf("src1 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src1), ggml_is_transposed(src1), ggml_type_name(src1->type), src1->name);

if (!split && all_on_device && !use_tensor_cores && src0->type == GGML_TYPE_F16 && ggml_is_permuted(src0) && ggml_is_permuted(src1) && src1->ne[1] == 1) {
if (!split && all_on_device && !fp16_performance_good && src0->type == GGML_TYPE_F16 && ggml_is_permuted(src0) && ggml_is_permuted(src1) && src1->ne[1] == 1) {
// KQ single-batch
ggml_cuda_mul_mat_vec_p021(src0, src1, dst);
} else if (!split && all_on_device && !use_tensor_cores && src0->type == GGML_TYPE_F16 && !ggml_is_contiguous(src0) && !ggml_is_transposed(src1) && src1->ne[1] == 1) {
} else if (!split && all_on_device && !fp16_performance_good && src0->type == GGML_TYPE_F16 && !ggml_is_contiguous(src0) && !ggml_is_transposed(src1) && src1->ne[1] == 1) {
// KQV single-batch
ggml_cuda_mul_mat_vec_nc(src0, src1, dst);
} else if (!split && all_on_device && use_tensor_cores && src0->type == GGML_TYPE_F16 && !ggml_is_transposed(src0) && !ggml_is_transposed(src1)) {
} else if (!split && all_on_device && fp16_performance_good && src0->type == GGML_TYPE_F16 && !ggml_is_transposed(src0) && !ggml_is_transposed(src1)) {
// KQ + KQV multi-batch
ggml_cuda_mul_mat_mat_batched_cublas(src0, src1, dst);
} else if (src0->type == GGML_TYPE_F32) {
Expand All @@ -8701,14 +8715,6 @@ static void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1
ggml_cuda_op_mul_mat(src0, src1, dst, ggml_cuda_op_dequantize_mul_mat_vec, false);
}
} else {
bool use_mul_mat_q = min_compute_capability >= MIN_CC_DP4A && ggml_is_quantized(src0->type);

// when tensor cores are available, use them for large batch size
// ref: https://github.com/ggerganov/llama.cpp/pull/3776
if (use_tensor_cores && min_compute_capability >= CC_VOLTA && src1->ne[1] > MMQ_MAX_BATCH_SIZE) {
use_mul_mat_q = false;
}

if (use_mul_mat_q) {
ggml_cuda_op_mul_mat(src0, src1, dst, ggml_cuda_op_mul_mat_q, true);
} else {
Expand Down

0 comments on commit a20f3c7

Please sign in to comment.