-
Notifications
You must be signed in to change notification settings - Fork 9.9k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* batched : add bench tool * batched : minor fix table * batched-bench : add readme + n_kv_max is now configurable * batched-bench : init warm-up batch * batched-bench : pass custom set of PP, TG and PL * batched-bench : add mmq CLI arg
- Loading branch information
Showing
7 changed files
with
321 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -55,6 +55,7 @@ models-mnt | |
/server | ||
/simple | ||
/batched | ||
/batched-bench | ||
/export-lora | ||
/finetune | ||
/speculative | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,5 @@ | ||
set(TARGET batched-bench) | ||
add_executable(${TARGET} batched-bench.cpp) | ||
install(TARGETS ${TARGET} RUNTIME) | ||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT}) | ||
target_compile_features(${TARGET} PRIVATE cxx_std_11) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,51 @@ | ||
# llama.cpp/example/batched-bench | ||
|
||
Benchmark the batched decoding performance of `llama.cpp` | ||
|
||
## Usage | ||
|
||
There are 2 modes of operation: | ||
|
||
- `prompt not shared` - each batch has a separate prompt of size `PP` (i.e. `N_KV = B*(PP + TG)`) | ||
- `prompt is shared` - there is a common prompt of size `PP` used by all batches (i.e. `N_KV = PP + B*TG`) | ||
|
||
```bash | ||
./batched-bench MODEL_PATH [N_KV_MAX] [IS_PP_SHARED] [NGL] [MMQ] <PP> <TG> <PL> | ||
|
||
# LLaMA 7B, F16, N_KV_MAX = 16384 (8GB), prompt not shared | ||
./batched-bench ./models/llama-7b/ggml-model-f16.gguf 16384 0 99 | ||
|
||
# LLaMA 7B, Q8_0, N_KV_MAX = 16384 (8GB), prompt is shared | ||
./batched-bench ./models/llama-7b/ggml-model-q8_0.gguf 16384 1 99 | ||
|
||
# custom set of batches | ||
./batched-bench ./models/llama-7b/ggml-model-q8_0.gguf 2048 0 999 0 128,256,512 128,256 1,2,4,8,16,32 | ||
``` | ||
|
||
## Sample results | ||
|
||
- `PP` - prompt tokens per batch | ||
- `TG` - generated tokens per batch | ||
- `B` - number of batches | ||
- `N_KV` - required KV cache size | ||
- `T_PP` - prompt processing time (i.e. time to first token) | ||
- `S_PP` - prompt processing speed (`(B*PP)/T_PP` or `PP/T_PP`) | ||
- `T_TG` - time to generate all batches | ||
- `S_TG` - text generation speed (`(B*TG)/T_TG`) | ||
- `T` - total time | ||
- `S` - total speed (i.e. all tokens / total time) | ||
|
||
| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s | | ||
|-------|--------|------|--------|----------|----------|----------|----------|----------|----------| | ||
| 128 | 128 | 1 | 256 | 0.108 | 1186.64 | 3.079 | 41.57 | 3.187 | 80.32 | | ||
| 128 | 128 | 2 | 512 | 0.198 | 1295.19 | 5.029 | 50.90 | 5.227 | 97.95 | | ||
| 128 | 128 | 4 | 1024 | 0.373 | 1373.96 | 6.878 | 74.44 | 7.251 | 141.23 | | ||
| 128 | 128 | 8 | 2048 | 0.751 | 1363.27 | 7.344 | 139.43 | 8.095 | 252.99 | | ||
| 128 | 128 | 16 | 4096 | 1.570 | 1304.68 | 8.455 | 242.23 | 10.024 | 408.60 | | ||
| 128 | 128 | 32 | 8192 | 3.408 | 1201.73 | 8.801 | 465.40 | 12.209 | 670.96 | | ||
| 128 | 256 | 1 | 384 | 0.107 | 1196.70 | 6.329 | 40.45 | 6.436 | 59.67 | | ||
| 128 | 256 | 2 | 768 | 0.194 | 1317.45 | 10.239 | 50.00 | 10.433 | 73.61 | | ||
| 128 | 256 | 4 | 1536 | 0.366 | 1399.03 | 13.960 | 73.35 | 14.326 | 107.22 | | ||
| 128 | 256 | 8 | 3072 | 0.751 | 1363.92 | 15.110 | 135.54 | 15.861 | 193.69 | | ||
| 128 | 256 | 16 | 6144 | 1.569 | 1304.93 | 18.073 | 226.64 | 19.642 | 312.80 | | ||
| 128 | 256 | 32 | 12288 | 3.409 | 1201.35 | 19.223 | 426.15 | 22.633 | 542.93 | |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,251 @@ | ||
#include "common.h" | ||
#include "llama.h" | ||
|
||
#include <algorithm> | ||
#include <cmath> | ||
#include <cstdio> | ||
#include <string> | ||
#include <vector> | ||
|
||
// mutates the input string | ||
static std::vector<int> parse_list(char * p) { | ||
std::vector<int> ret; | ||
|
||
char * q = p; | ||
|
||
while (*p) { | ||
if (*p == ',') { | ||
*p = '\0'; | ||
ret.push_back(std::atoi(q)); | ||
q = p + 1; | ||
} | ||
|
||
++p; | ||
} | ||
|
||
ret.push_back(std::atoi(q)); | ||
|
||
return ret; | ||
} | ||
|
||
int main(int argc, char ** argv) { | ||
gpt_params params; | ||
|
||
if (argc == 1 || argv[1][0] == '-') { | ||
printf("usage: %s MODEL_PATH [N_KV_MAX] [IS_PP_SHARED] [NGL] [MMQ] <PP> <TG> <PL>\n" , argv[0]); | ||
printf(" <PP>, <TG> and PL are comma-separated lists of numbers without spaces\n\n"); | ||
printf(" example: %s ggml-model-f16.gguf 2048 0 999 0 128,256,512 128,256 1,2,4,8,16,32\n\n", argv[0]); | ||
return 1 ; | ||
} | ||
|
||
int n_kv_max = 2048; | ||
int is_pp_shared = 0; | ||
int n_gpu_layers = 0; | ||
int mmq = 0; | ||
|
||
std::vector<int> n_pp = { 128, 256, 512, 1024, 2048, 3584, 7680, }; | ||
std::vector<int> n_tg = { 128, 256, }; | ||
std::vector<int> n_pl = { 1, 2, 4, 8, 16, 32, }; | ||
//std::vector<int> n_pl = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 32, }; | ||
|
||
if (argc >= 2) { | ||
params.model = argv[1]; | ||
} | ||
|
||
if (argc >= 3) { | ||
n_kv_max = std::atoi(argv[2]); | ||
} | ||
|
||
if (argc >= 4) { | ||
is_pp_shared = std::atoi(argv[3]); | ||
} | ||
|
||
if (argc >= 5) { | ||
n_gpu_layers = std::atoi(argv[4]); | ||
} | ||
|
||
if (argc >= 6) { | ||
mmq = std::atoi(argv[5]); | ||
} | ||
|
||
if (argc >= 7) { | ||
n_pp = parse_list(argv[6]); | ||
} | ||
|
||
if (argc >= 8) { | ||
n_tg = parse_list(argv[7]); | ||
} | ||
|
||
if (argc >= 9) { | ||
n_pl = parse_list(argv[8]); | ||
} | ||
|
||
// init LLM | ||
|
||
llama_backend_init(params.numa); | ||
|
||
// initialize the model | ||
|
||
llama_model_params model_params = llama_model_default_params(); | ||
|
||
model_params.n_gpu_layers = n_gpu_layers; | ||
|
||
llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params); | ||
|
||
if (model == NULL) { | ||
fprintf(stderr , "%s: error: unable to load model\n" , __func__); | ||
return 1; | ||
} | ||
|
||
llama_context_params ctx_params = llama_context_default_params(); | ||
|
||
ctx_params.seed = 1234; | ||
ctx_params.n_ctx = n_kv_max; | ||
ctx_params.n_batch = 512; | ||
ctx_params.mul_mat_q = mmq; | ||
|
||
ctx_params.n_threads = params.n_threads; | ||
ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch; | ||
|
||
llama_context * ctx = llama_new_context_with_model(model, ctx_params); | ||
|
||
if (ctx == NULL) { | ||
fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__); | ||
return 1; | ||
} | ||
|
||
llama_batch batch = llama_batch_init(n_kv_max, 0); | ||
|
||
// decode in batches of ctx_params.n_batch tokens | ||
auto decode_helper = [](llama_context * ctx, llama_batch & batch, int32_t n_batch) { | ||
for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch) { | ||
const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i)); | ||
|
||
llama_batch batch_view = { | ||
n_tokens, | ||
batch.token + i, | ||
nullptr, | ||
batch.pos + i, | ||
batch.seq_id + i, | ||
batch.logits + i, | ||
0, 0, 0, // unused | ||
}; | ||
|
||
const int ret = llama_decode(ctx, batch_view); | ||
if (ret != 0) { | ||
LOG_TEE("failed to decode the batch, n_batch = %d, ret = %d\n", n_batch, ret); | ||
return false; | ||
} | ||
} | ||
|
||
return true; | ||
}; | ||
|
||
// warm up | ||
{ | ||
batch.n_tokens = 16; | ||
|
||
for (int i = 0; i < batch.n_tokens; ++i) { | ||
batch.token[i] = 0; | ||
batch.pos[i] = i; | ||
batch.seq_id[i] = 0; | ||
batch.logits[i] = false; | ||
} | ||
|
||
if (!decode_helper(ctx, batch, ctx_params.n_batch)) { | ||
LOG_TEE("%s: llama_decode() failed\n", __func__); | ||
return 1; | ||
} | ||
} | ||
|
||
LOG_TEE("|%6s | %6s | %4s | %6s | %8s | %8s | %8s | %8s | %8s | %8s |\n", "PP", "TG", "B", "N_KV", "T_PP s", "S_PP t/s", "T_TG s", "S_TG t/s", "T s", "S t/s"); | ||
LOG_TEE("|%6s-|-%6s-|-%4s-|-%6s-|-%8s-|-%8s-|-%8s-|-%8s-|-%8s-|-%8s-|\n", "------", "------", "----", "------", "--------", "--------", "--------", "--------", "--------", "--------"); | ||
|
||
for ( int i_pp = 0; i_pp < (int) n_pp.size(); ++i_pp) { | ||
for ( int i_tg = 0; i_tg < (int) n_tg.size(); ++i_tg) { | ||
for (int i_pl = 0; i_pl < (int) n_pl.size(); ++i_pl) { | ||
const int pp = n_pp[i_pp]; | ||
const int tg = n_tg[i_tg]; | ||
const int pl = n_pl[i_pl]; | ||
|
||
const int n_ctx_req = is_pp_shared ? pp + pl*tg : pl*(pp + tg); | ||
|
||
if (n_ctx_req > n_kv_max) { | ||
continue; | ||
} | ||
|
||
batch.n_tokens = is_pp_shared ? pp : pl*pp; | ||
|
||
for (int i = 0; i < batch.n_tokens; ++i) { | ||
batch.token[i] = 0; | ||
batch.pos[i] = i; | ||
batch.seq_id[i] = 0; | ||
batch.logits[i] = false; | ||
} | ||
batch.logits[batch.n_tokens - 1] = true; | ||
|
||
const auto t_pp_start = ggml_time_us(); | ||
|
||
llama_kv_cache_tokens_rm(ctx, -1, -1); | ||
|
||
if (!decode_helper(ctx, batch, ctx_params.n_batch)) { | ||
LOG_TEE("%s: llama_decode() failed\n", __func__); | ||
return 1; | ||
} | ||
|
||
if (is_pp_shared) { | ||
for (int32_t i = 1; i < pl; ++i) { | ||
llama_kv_cache_seq_cp(ctx, 0, i, 0, pp); | ||
} | ||
} | ||
|
||
const auto t_pp_end = ggml_time_us(); | ||
|
||
const auto t_tg_start = ggml_time_us(); | ||
|
||
for (int i = 0; i < tg; ++i) { | ||
batch.n_tokens = pl; | ||
|
||
for (int j = 0; j < pl; ++j) { | ||
batch.token[j] = 0; | ||
batch.pos[j] = pp + i; | ||
batch.seq_id[j] = j; | ||
batch.logits[j] = true; | ||
} | ||
|
||
if (!decode_helper(ctx, batch, ctx_params.n_batch)) { | ||
LOG_TEE("%s: llama_decode() failed\n", __func__); | ||
return 1; | ||
} | ||
} | ||
|
||
const auto t_tg_end = ggml_time_us(); | ||
|
||
const int32_t n_kv = n_ctx_req; | ||
|
||
const float t_pp = (t_pp_end - t_pp_start) / 1000000.0f; | ||
const float t_tg = (t_tg_end - t_tg_start) / 1000000.0f; | ||
const float t = t_pp + t_tg; | ||
|
||
const float speed_pp = is_pp_shared ? pp / t_pp : pl*pp / t_pp; | ||
const float speed_tg = pl*tg / t_tg; | ||
const float speed = n_kv / t; | ||
|
||
LOG_TEE("|%6d | %6d | %4d | %6d | %8.3f | %8.2f | %8.3f | %8.2f | %8.3f | %8.2f |\n", pp, tg, pl, n_kv, t_pp, speed_pp, t_tg, speed_tg, t, speed); | ||
} | ||
} | ||
} | ||
|
||
llama_print_timings(ctx); | ||
|
||
llama_batch_free(batch); | ||
|
||
llama_free(ctx); | ||
llama_free_model(model); | ||
|
||
llama_backend_free(); | ||
|
||
fprintf(stderr, "\n\n"); | ||
|
||
return 0; | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters