This is the official code for MuLe (Multi-Grained Graph Learning for Multi-Behavior Recommendation), accepted to CIKM 2024.
You can install the required packages with a conda environment by typing the following command in your terminal:
conda create -n MULE python=3.9
conda activate MULE
pip install -r requirements.txt
The statistics of datasets used in MuLe are summarized as follows. The percentage of each auxiliary behavior is the ratio of target intersected interactions (e.g., view and buy).
Dataset | Users | Items | Views | Collects | Carts | Buys |
---|---|---|---|---|---|---|
Taobao | 15,449 | 11,953 | 873,954 (9%) | - | 195,476 (10%) | 92,180 |
Tmall | 41,738 | 11,953 | 1,813,498 (12%) | 221,514 (12%) | 1,996 (15%) | 255,586 |
Jdata | 93,334 | 24,624 | 1,681,430 (16%) | 45,613 (43%) | 49,891 (57%) | 321,883 |
We gathered Tmall and Jdata datasets from CRGCN and Taobao dataset from MBCGCN. To preprocess the datasets for use in our code, type the following command:
python ./data/preprocess.py
You can train the model with the best hyperparameters for each dataset by typing the following command in your terminal:
python ./src/main.py --dataset taobao \
--lr 1e-4 \
--weight_decay 0 \
--tda_layers 4 \
--gnn_layers 1 \
--emb_dim 64 \
--num_epochs 100 \
--batch_size 1024
python ./src/main.py --dataset tmall \
--lr 5e-4 \
--weight_decay 1e-5 \
--tda_layers 5 \
--gnn_layers 1 \
--emb_dim 64 \
--num_epochs 100 \
--batch_size 1024
python ./src/main.py --dataset jdata \
--lr 1e-3 \
--weight_decay 0 \
--tda_layers 5 \
--gnn_layers 1 \
--emb_dim 64 \
--num_epochs 100 \
--batch_size 1024
Because of the volume limit of the github, we provide the pre-trained parameters of MuLe for each dataset in google drive. You can download the pre-trained files as follows:
gdown --folder https://drive.google.com/drive/folders/1L5wnVGQ6EhBy9wyPJTOxsU9JD7zIIvrc
After downloading the pre-trained parameters, you can run the pre-trained model by adding --load_checkpoint
option to the above training command.
The test performance of the pre-trained MuLE for each dataset is as follows:
Dataset | HR@10 | NDCG@10 |
---|---|---|
Taobao | 0.1939 | 0.1109 |
Tmall | 0.2109 | 0.1165 |
Jdata | 0.5820 | 0.4147 |
All experiments are conducted on RTX 4090 (24GB) with cuda version 11.8, and the above results were reproduced with the random seed seed=42
.
The reported results in the paper are as follows:
HR@10 | Taobao | Tmall | Jdata |
---|---|---|---|
LightGCN | 0.0411 | 0.0393 | 0.2252 |
CRGCN | 0.0855 | 0.0840 | 0.5001 |
MB-CGCN | 0.1233 | 0.0984 | 0.4349 |
HPMR | 0.1104 | 0.0956 | - |
PKEF | 0.1385 | 0.1277 | 0.4334 |
MB-HGCN | 0.1299 | 0.1443 | 0.5406 |
MuLE | 0.1918 | 0.2112 | 0.5889 |
% diff | 38.5% | 44.6% | 10.3% |
NDCG@10 | Taobao | Tmall | Jdata |
---|---|---|---|
LightGCN | 0.0240 | 0.0209 | 0.1436 |
CRGCN | 0.0439 | 0.0442 | 0.2914 |
MB-CGCN | 0.0677 | 0.0558 | 0.2758 |
HPMR | 0.0599 | 0.0515 | - |
PKEF | 0.0785 | 0.0721 | 0.2615 |
MB-HGCN | 0.0690 | 0.0769 | 0.3555 |
MuLE | 0.1103 | 0.1177 | 0.4061 |
% diff | 40.5% | 52.9% | 25.4% |
We provide the validated hyperparameters of MuLe for each dataset to ensure reproducibility.
Dataset | |||||||
---|---|---|---|---|---|---|---|
Taobao | 1e-4 | 0 | 4 | 1 | 64 | 100 | 1024 |
Tmall | 5e-4 | 1e-5 | 5 | 1 | 64 | 100 | 1024 |
Jdata | 1e-3 | 0 | 5 | 1 | 64 | 100 | 1024 |
Description of each hyperparameter
-
$\eta$ : learning rate of the Adam optimizer (--lr
) -
$\lambda$ : weight decay for L2-regularization (--weight_decay
) -
$L_{\texttt{tda}}$ : number of TDA's layers (--tda_layers
) -
$L_{\texttt{light}}$ : number of LightGCN's layers (--gnn_layers
) -
$d$ : embedding dimension (--emb_dim
) -
$T$ : number of epochs (--num_epochs
) -
$B$ : batch size for target data (--batch_size
)
You can train and evaluate your own dataset with custom hyperparameters as follows:
Option | Description | Default |
---|---|---|
dataset |
dataset name | taobao |
data_dir |
data directory path | ./data |
checkpoint_dir |
checkpoint directory path | ./checkpoint |
load_checkpoint |
whether to load the configuration used in a pre-trained model | False |
batch_size |
batch size for target data | 1024 |
lr |
learning rate | 0.0001 |
weight_decay |
strength |
0.00001 |
gnn_layers |
number of LightGCN layers | 1 |
tda_layers |
number of TDA layers | 4 |
emb_dim |
embedding dimension | 64 |
num_epochs |
number of epochs | 100 |
seed |
random seed; If None, the seed is not fixed | 42 |
device |
training device | cuda:0 |
topk |
Top-k items | 10 |
Please cite the paper if you use this code in your own work:
@inproceedings{10.1145/3627673.3679709,
author = {Lee, Seunghan and Ko, Geonwoo and Song, Hyun-Je and Jung, Jinhong},
title = {MuLe: Multi-Grained Graph Learning for Multi-Behavior Recommendation},
year = {2024},
booktitle = {ACM International Conference on Information and Knowledge Management},
url = {https://doi.org/10.1145/3627673.3679709}
}