Skip to content

garry1ng/pytorch0.4.1_cuda11

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Pytorch0.4.1 with CUDA 11 and cudnn 8.2

This is a repo for setup Pytorch0.4.1 with CUDA 11 and cudnn 8.2

  1. Download CUDA 11.1 and cudnn 8.0.5 from Nvidia. I use cuda_11.1.0_455.23.05_linux.run and cudnn-11.1-linux-x64-v8.0.5.39.tgz. Set up your CUDA_HOME and LD_LIBRARY_PATH in your .bashrc.

  2. Install dependencies from conda.

conda create -n "pytorch0.4" python=3.7
conda activate "pytorch0.4"
conda install numpy pyyaml mkl=2021.4.0 mkl-include setuptools cmake cffi typing
  1. Recursively Clone Pytorch0.4.1 from https://github.com/garry1ng/pytorch0.4.1_cuda11.git. Make sure the submodules except nervanagpu are also included.
git clone https://github.com/garry1ng/pytorch0.4.1_cuda11.git
cd pytorch0.4.1_cuda11/
# git submodule deinit third_party/nervanagpu/
# git rm third_party/nervanagpu
git submodule sync
git submodule update --init --recursive
  1. Install PyTorch.
python setup.py install
  1. run test_pytorch0.4_cu11_cudnn.py to check if it is correctly installed. You should have some output like this:

Note: the patch may be outdated if the third party libraries update (very unlikely though). Locating these files can save time.

  • third_party/nccl/src/common_coll.h
  • third_party/gloo/cmake/Cuda.cmake