forked from vllm-project/vllm
-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Core] Adding Priority Scheduling (vllm-project#5958)
Signed-off-by: Amit Garg <[email protected]>
- Loading branch information
Showing
6 changed files
with
410 additions
and
8 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,295 @@ | ||
"""Benchmark offline prioritization.""" | ||
import argparse | ||
import json | ||
import random | ||
import time | ||
from typing import List, Optional, Tuple | ||
|
||
from transformers import AutoTokenizer, PreTrainedTokenizerBase | ||
|
||
from vllm.model_executor.layers.quantization import QUANTIZATION_METHODS | ||
|
||
|
||
def sample_requests( | ||
dataset_path: str, | ||
num_requests: int, | ||
tokenizer: PreTrainedTokenizerBase, | ||
fixed_output_len: Optional[int], | ||
) -> List[Tuple[str, int, int]]: | ||
if fixed_output_len is not None and fixed_output_len < 4: | ||
raise ValueError("output_len too small") | ||
|
||
# Load the dataset. | ||
with open(dataset_path) as f: | ||
dataset = json.load(f) | ||
# Filter out the conversations with less than 2 turns. | ||
dataset = [data for data in dataset if len(data["conversations"]) >= 2] | ||
# Only keep the first two turns of each conversation. | ||
dataset = [(data["conversations"][0]["value"], | ||
data["conversations"][1]["value"]) for data in dataset] | ||
|
||
# Shuffle the dataset. | ||
random.shuffle(dataset) | ||
|
||
# Filter out sequences that are too long or too short | ||
filtered_dataset: List[Tuple[str, int, int]] = [] | ||
for i in range(len(dataset)): | ||
if len(filtered_dataset) == num_requests: | ||
break | ||
|
||
# Tokenize the prompts and completions. | ||
prompt = dataset[i][0] | ||
prompt_token_ids = tokenizer(prompt).input_ids | ||
completion = dataset[i][1] | ||
completion_token_ids = tokenizer(completion).input_ids | ||
prompt_len = len(prompt_token_ids) | ||
output_len = len(completion_token_ids | ||
) if fixed_output_len is None else fixed_output_len | ||
if prompt_len < 4 or output_len < 4: | ||
# Prune too short sequences. | ||
continue | ||
if prompt_len > 1024 or prompt_len + output_len > 2048: | ||
# Prune too long sequences. | ||
continue | ||
|
||
#Select a equi-probable random priority | ||
priority = 0 if random.random() < 0.5 else 1 | ||
|
||
filtered_dataset.append((prompt, prompt_len, output_len, priority)) | ||
|
||
return filtered_dataset | ||
|
||
|
||
def run_vllm( | ||
requests: List[Tuple[str, int, int]], | ||
model: str, | ||
tokenizer: str, | ||
quantization: Optional[str], | ||
tensor_parallel_size: int, | ||
seed: int, | ||
n: int, | ||
use_beam_search: bool, | ||
trust_remote_code: bool, | ||
dtype: str, | ||
max_model_len: Optional[int], | ||
enforce_eager: bool, | ||
kv_cache_dtype: str, | ||
quantization_param_path: Optional[str], | ||
device: str, | ||
enable_prefix_caching: bool, | ||
enable_chunked_prefill: bool, | ||
max_num_batched_tokens: int, | ||
gpu_memory_utilization: float = 0.9, | ||
download_dir: Optional[str] = None, | ||
) -> float: | ||
from vllm import LLM, SamplingParams | ||
llm = LLM( | ||
model=model, | ||
tokenizer=tokenizer, | ||
quantization=quantization, | ||
tensor_parallel_size=tensor_parallel_size, | ||
seed=seed, | ||
trust_remote_code=trust_remote_code, | ||
dtype=dtype, | ||
max_model_len=max_model_len, | ||
gpu_memory_utilization=gpu_memory_utilization, | ||
enforce_eager=enforce_eager, | ||
kv_cache_dtype=kv_cache_dtype, | ||
quantization_param_path=quantization_param_path, | ||
device=device, | ||
enable_prefix_caching=enable_prefix_caching, | ||
download_dir=download_dir, | ||
enable_chunked_prefill=enable_chunked_prefill, | ||
max_num_batched_tokens=max_num_batched_tokens, | ||
disable_log_stats=False, | ||
) | ||
|
||
# Add the requests to the engine. | ||
prompts = [] | ||
sampling_params = [] | ||
priority = [] | ||
for prompt, _, output_len, _priority in requests: | ||
prompts.append(prompt) | ||
priority.append(_priority) | ||
sampling_params.append( | ||
SamplingParams( | ||
n=n, | ||
temperature=0.0 if use_beam_search else 1.0, | ||
top_p=1.0, | ||
use_beam_search=use_beam_search, | ||
ignore_eos=True, | ||
max_tokens=output_len, | ||
)) | ||
|
||
start = time.perf_counter() | ||
llm.generate(prompts, sampling_params, priority=priority, use_tqdm=True) | ||
end = time.perf_counter() | ||
return end - start | ||
|
||
|
||
def main(args: argparse.Namespace): | ||
print(args) | ||
random.seed(args.seed) | ||
|
||
# Sample the requests. | ||
tokenizer = AutoTokenizer.from_pretrained( | ||
args.tokenizer, trust_remote_code=args.trust_remote_code) | ||
if args.dataset is None: | ||
# Synthesize a prompt with the given input length. | ||
prompt = "hi" * (args.input_len - 1) | ||
requests = [(prompt, args.input_len, args.output_len) | ||
for _ in range(args.num_prompts)] | ||
else: | ||
requests = sample_requests(args.dataset, args.num_prompts, tokenizer, | ||
args.output_len) | ||
|
||
if args.backend == "vllm": | ||
elapsed_time = run_vllm( | ||
requests, args.model, args.tokenizer, args.quantization, | ||
args.tensor_parallel_size, args.seed, args.n, args.use_beam_search, | ||
args.trust_remote_code, args.dtype, args.max_model_len, | ||
args.enforce_eager, args.kv_cache_dtype, | ||
args.quantization_param_path, args.device, | ||
args.enable_prefix_caching, args.enable_chunked_prefill, | ||
args.max_num_batched_tokens, args.gpu_memory_utilization, | ||
args.download_dir) | ||
else: | ||
raise ValueError(f"Unknown backend: {args.backend}") | ||
total_num_tokens = sum(prompt_len + output_len | ||
for _, prompt_len, output_len, priority in requests) | ||
print(f"Throughput: {len(requests) / elapsed_time:.2f} requests/s, " | ||
f"{total_num_tokens / elapsed_time:.2f} tokens/s") | ||
|
||
# Output JSON results if specified | ||
if args.output_json: | ||
results = { | ||
"elapsed_time": elapsed_time, | ||
"num_requests": len(requests), | ||
"total_num_tokens": total_num_tokens, | ||
"requests_per_second": len(requests) / elapsed_time, | ||
"tokens_per_second": total_num_tokens / elapsed_time, | ||
} | ||
with open(args.output_json, "w") as f: | ||
json.dump(results, f, indent=4) | ||
|
||
|
||
if __name__ == "__main__": | ||
parser = argparse.ArgumentParser(description="Benchmark the throughput.") | ||
parser.add_argument("--backend", | ||
type=str, | ||
choices=["vllm", "hf", "mii"], | ||
default="vllm") | ||
parser.add_argument("--dataset", | ||
type=str, | ||
default=None, | ||
help="Path to the dataset.") | ||
parser.add_argument("--input-len", | ||
type=int, | ||
default=None, | ||
help="Input prompt length for each request") | ||
parser.add_argument("--output-len", | ||
type=int, | ||
default=None, | ||
help="Output length for each request. Overrides the " | ||
"output length from the dataset.") | ||
parser.add_argument("--model", type=str, default="facebook/opt-125m") | ||
parser.add_argument("--tokenizer", type=str, default=None) | ||
parser.add_argument('--quantization', | ||
'-q', | ||
choices=[*QUANTIZATION_METHODS, None], | ||
default=None) | ||
parser.add_argument("--tensor-parallel-size", "-tp", type=int, default=1) | ||
parser.add_argument("--n", | ||
type=int, | ||
default=1, | ||
help="Number of generated sequences per prompt.") | ||
parser.add_argument("--use-beam-search", action="store_true") | ||
parser.add_argument("--num-prompts", | ||
type=int, | ||
default=200, | ||
help="Number of prompts to process.") | ||
parser.add_argument("--seed", type=int, default=0) | ||
parser.add_argument('--trust-remote-code', | ||
action='store_true', | ||
help='trust remote code from huggingface') | ||
parser.add_argument( | ||
'--max-model-len', | ||
type=int, | ||
default=None, | ||
help='Maximum length of a sequence (including prompt and output). ' | ||
'If None, will be derived from the model.') | ||
parser.add_argument( | ||
'--dtype', | ||
type=str, | ||
default='auto', | ||
choices=['auto', 'half', 'float16', 'bfloat16', 'float', 'float32'], | ||
help='data type for model weights and activations. ' | ||
'The "auto" option will use FP16 precision ' | ||
'for FP32 and FP16 models, and BF16 precision ' | ||
'for BF16 models.') | ||
parser.add_argument('--gpu-memory-utilization', | ||
type=float, | ||
default=0.9, | ||
help='the fraction of GPU memory to be used for ' | ||
'the model executor, which can range from 0 to 1.' | ||
'If unspecified, will use the default value of 0.9.') | ||
parser.add_argument("--enforce-eager", | ||
action="store_true", | ||
help="enforce eager execution") | ||
parser.add_argument( | ||
'--kv-cache-dtype', | ||
type=str, | ||
choices=['auto', 'fp8', 'fp8_e5m2', 'fp8_e4m3'], | ||
default="auto", | ||
help='Data type for kv cache storage. If "auto", will use model ' | ||
'data type. CUDA 11.8+ supports fp8 (=fp8_e4m3) and fp8_e5m2. ' | ||
'ROCm (AMD GPU) supports fp8 (=fp8_e4m3)') | ||
parser.add_argument( | ||
'--quantization-param-path', | ||
type=str, | ||
default=None, | ||
help='Path to the JSON file containing the KV cache scaling factors. ' | ||
'This should generally be supplied, when KV cache dtype is FP8. ' | ||
'Otherwise, KV cache scaling factors default to 1.0, which may cause ' | ||
'accuracy issues. FP8_E5M2 (without scaling) is only supported on ' | ||
'cuda version greater than 11.8. On ROCm (AMD GPU), FP8_E4M3 is ' | ||
'instead supported for common inference criteria.') | ||
parser.add_argument( | ||
"--device", | ||
type=str, | ||
default="cuda", | ||
choices=["cuda", "cpu"], | ||
help='device type for vLLM execution, supporting CUDA and CPU.') | ||
parser.add_argument( | ||
"--enable-prefix-caching", | ||
action='store_true', | ||
help="enable automatic prefix caching for vLLM backend.") | ||
parser.add_argument("--enable-chunked-prefill", | ||
action='store_true', | ||
help="enable chunked prefill for vLLM backend.") | ||
parser.add_argument('--max-num-batched-tokens', | ||
type=int, | ||
default=None, | ||
help='maximum number of batched tokens per ' | ||
'iteration') | ||
parser.add_argument('--download-dir', | ||
type=str, | ||
default=None, | ||
help='directory to download and load the weights, ' | ||
'default to the default cache dir of huggingface') | ||
parser.add_argument( | ||
'--output-json', | ||
type=str, | ||
default=None, | ||
help='Path to save the throughput results in JSON format.') | ||
|
||
args = parser.parse_args() | ||
if args.tokenizer is None: | ||
args.tokenizer = args.model | ||
if args.dataset is None: | ||
assert args.input_len is not None | ||
assert args.output_len is not None | ||
else: | ||
assert args.input_len is None | ||
|
||
main(args) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.