Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Admit g^chi and chi^g for Brauer characters chi and group elements g #4764

Merged
merged 1 commit into from
Feb 14, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
53 changes: 42 additions & 11 deletions lib/ctblfuns.gi
Original file line number Diff line number Diff line change
Expand Up @@ -521,15 +521,32 @@ InstallMethod( \^,
"for class function and group element",
[ IsClassFunction, IsMultiplicativeElementWithInverse ],
function( chi, g )
local tbl, G;
local tbl, G, mtbl, pi, fus, inv, imgs;

tbl:= UnderlyingCharacterTable( chi );
if HasUnderlyingGroup( tbl ) then
# 'chi' is an ordinary character.
G:= UnderlyingGroup( tbl );
if IsElmsColls( FamilyObj( g ), FamilyObj( G ) ) then
return ClassFunctionSameType( tbl, chi,
Permuted( ValuesOfClassFunction( chi ),
CorrespondingPermutations( tbl, chi, [ g ] )[1] ) );
fi;
elif HasOrdinaryCharacterTable( tbl ) then
# 'chi' is a Brauer character.
mtbl:= tbl;
tbl:= OrdinaryCharacterTable( mtbl );
if HasUnderlyingGroup( tbl ) then
G:= UnderlyingGroup( tbl );
if IsElmsColls( FamilyObj( g ), FamilyObj( G ) ) then
pi:= CorrespondingPermutations( tbl, [ g ] )[1]^-1;
fus:= GetFusionMap( mtbl, tbl );
inv:= InverseMap( fus );
imgs:= List( [ 1 .. Length( fus ) ], i -> inv[ fus[i]^pi ] );
return ClassFunctionSameType( mtbl, chi,
ValuesOfClassFunction( chi ){ imgs } );
fi;
fi;
fi;
TryNextMethod();
end );
Expand Down Expand Up @@ -579,20 +596,34 @@ InstallOtherMethod( \^,
InstallOtherMethod( \^,
[ IsMultiplicativeElementWithInverse, IsClassFunction ],
function( g, chi )
local tbl, ccl, i;
local tbl, mtbl, ccl, i;

tbl:= UnderlyingCharacterTable( chi );
if not HasUnderlyingGroup( tbl ) then
if HasOrdinaryCharacterTable( tbl ) then
# 'chi' is a Brauer character.
mtbl:= tbl;
tbl:= OrdinaryCharacterTable( mtbl );
if not HasUnderlyingGroup( tbl ) then
Error( "table <tbl> of <chi> does not store its group" );
elif not g in UnderlyingGroup( tbl )
or Order( g ) mod UnderlyingCharacteristic( mtbl ) = 0 then
Error( "<g> must be p-regular and lie in the underlying group of <chi>" );
else
ccl:= ConjugacyClasses( tbl ){ GetFusionMap( mtbl, tbl ) };
fi;
elif not HasUnderlyingGroup( tbl ) then
Error( "table <tbl> of <chi> does not store its group" );
elif g in UnderlyingGroup( tbl ) then
ccl:= ConjugacyClasses( tbl );
for i in [ 1 .. Length( ccl ) ] do
if g in ccl[i] then
return ValuesOfClassFunction( chi )[i];
fi;
od;
else
elif not g in UnderlyingGroup( tbl ) then
Error( "<g> must lie in the underlying group of <chi>" );
else
ccl:= ConjugacyClasses( tbl );
fi;

for i in [ 1 .. Length( ccl ) ] do
if g in ccl[i] then
return ValuesOfClassFunction( chi )[i];
fi;
od;
end );


Expand Down
20 changes: 19 additions & 1 deletion tst/testinstall/ctblfuns.tst
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
#@local S4,V4,irr,l, tbl, v
#@local S4,V4,irr,l, tbl, v, g, h, t, chi, t5, irr5
gap> START_TEST("ctblfuns.tst");
gap> S4:= SymmetricGroup( 4 );
Sym( [ 1 .. 4 ] )
Expand Down Expand Up @@ -67,5 +67,23 @@ fail
gap> SizeOfFieldOfDefinition( Z(25), 5 );
Error, <val> must be a cyclotomic or a list of cyclotomics

#
gap> S4:= SymmetricGroup( 4 );;
gap> V4:= PCore( S4, 2 );;
gap> t:= CharacterTable( V4 );;
gap> irr:= Irr( t );;
gap> List( irr, chi -> Position( irr, chi^S4.1 ) );
[ 1, 3, 2, 4 ]
gap> chi:= irr[2];;
gap> chi = List( ConjugacyClasses( V4 ), x -> Representative(x)^chi );
true
gap> t5:= t mod 5;;
gap> irr5:= Irr( t5 );;
gap> List( irr5, chi -> Position( irr5, chi^S4.1 ) );
[ 1, 3, 2, 4 ]
gap> chi:= irr5[2];;
gap> chi = List( ConjugacyClasses( V4 ), x -> Representative(x)^chi );
true

#
gap> STOP_TEST( "ctblfuns.tst", 1);