Arkitekt is a set of architectural tools based on Android Architecture Components, which gives you a solid base to implement the concise, testable and solid application.
android {
// AGP < 4.0.0
dataBinding {
enabled = true
}
// AGP >= 4.0.0
buildFeatures {
dataBinding = true
}
}
dependencies {
implementation("app.futured.arkitekt:core:LatestVersion")
implementation("app.futured.arkitekt:bindingadapters:LatestVersion")
implementation("app.futured.arkitekt:dagger:LatestVersion")
implementation("app.futured.arkitekt:cr-usecases:LatestVersion")
implementation("app.futured.arkitekt:rx-usecases:LatestVersion")
// Testing
testImplementation("app.futured.arkitekt:core-test:LatestVersion")
testImplementation("app.futured.arkitekt:rx-usecases-test:LatestVersion")
testImplementation("app.futured.arkitekt:cr-usecases-test:LatestVersion")
}
Add new maven repo to your top level gradle file.
maven { url "https://oss.sonatype.org/content/repositories/snapshots" }
Snapshots are grouped based on major version, so for version 5.x use:
implementation "app.futured.arkitekt:arkitekt:5.X.X-SNAPSHOT"
Arkitekt combines built-in support for Dagger 2 dependency injection, View DataBinding, ViewModel and RxJava or Coroutines use cases. Architecture described here is used among wide variety of projects and it's production ready.
- Getting started - Minimal project file hierarchy
- Use Cases
- Propagating data model changes into UI
- Stores (Repositories)
Minimal working project must contain files as presented in example-minimal
module. File hierarchy might looks like this:
example-minimal
`-- src/main
|-- java/com/example
| |-- injection
| | |-- ActivityBuilderModule.kt
| | |-- ApplicationComponent.kt
| | `-- ApplicationModule.kt
| |-- ui
| | |-- base/BaseActivity.kt
| | `-- main
| | |-- MainActivity.kt
| | |-- MainActivityModule.kt
| | |-- MainView.kt
| | |-- MainViewModel.kt
| | |-- MainViewModelFactory.kt
| | `-- MainViewState.kt
| `-- App.kt
`-- res/layout/activity_main.xml
Keep in mind this description focuses on architecture .kt
files. Android related files like an
AndroidManifest.xml
are omitted. Let's describe individual files one by one:
File contains Dagger module class that takes responsibility of proper injection
into Activities. This is the place where every Activity and its ActivityModule
in project must be specified to make correct ViewModel injection work.
@Module
abstract class ActivityBuilderModule {
@ContributesAndroidInjector(modules = [MainActivityModule::class])
abstract fun mainActivity(): MainActivity
}
ApplicationComponent interface combines your singleton Dagger modules and defines
how DaggerApplicationComponent
should be generated.
@Singleton
@Component(
modules = [
AndroidInjectionModule::class,
AndroidSupportInjectionModule::class,
ActivityBuilderModule::class,
ApplicationModule::class
]
)
interface ApplicationComponent : AndroidInjector<App> {
@Component.Builder
interface Builder {
@BindsInstance
fun application(app: App): Builder
fun build(): ApplicationComponent
}
}
Application module definition. Your singleton scoped objects might be specified here and injected wherever needed. Example implementation:
@Module
class ApplicationModule {
@Singleton
@Provides
fun moshi(): Moshi = Moshi.Builder().build()
}
All of Activities in the project should inherit from this class to make DataBinding work properly. Be aware of fact BR class used in this class is generated when there is at least one layout file with correctly defined data variables. Read more here.
abstract class BaseActivity<VM : BaseViewModel<VS>, VS : ViewState, B : ViewDataBinding> :
BaseDaggerBindingActivity<VM, VS, B>() {
override val brViewVariableId = BR.view
override val brViewModelVariableId = BR.viewModel
override val brViewStateVariableId = BR.viewState
}
Example Activity implementation. viewModelFactory
and layoutResId
must be overridden in every
Activity in order to make ViewModel injection and DataBinding work. ActivityMainBinding
used
in BaseActivity
constructor is generated from related activity_main.xml
layout file. Make sure this file
exists and have root tag <layout>
before you try to build your code. ViewModel
can be
accessed through derived viewModel
field.
class MainActivity : BaseActivity<MainViewModel, MainViewState, ActivityMainBinding>(), MainView {
@Inject override lateinit var viewModelFactory: MainViewModelFactory
override val layoutResId = R.layout.activity_main
}
MainActivity
scoped module. It becomes useful when you want to provide specific
activity related configuration e.g.:
@Module
abstract class MainActivityModule {
@Provides
fun provideUser(activity: MainActivity): User =
activity.intent.getParcelableExtra("user")
}
Interface representing actions executable on your Activity/Fragment. These actions
might be invoked directly from xml layout thanks to view
data variable.
interface MainView : BaseView
Activity/Fragment specific ViewModel implementation. You can choose between extending
BaseViewModel
or BaseRxViewModel
with build-in support for RxJava based use cases.
class MainViewModel @Inject constructor() : BaseViewModel<MainViewState>() {
override val viewState = MainViewState
}
Factory responsible for ViewModel
creation. It is injected in Activity/Fragment.
class MainViewModelFactory @Inject constructor(
override val viewModelProvider: Provider<MainViewModel>
) : BaseViewModelFactory<MainViewModel>() {
override val viewModelClass = MainViewModel::class
}
State representation of an screen. Should contain set of LiveData
fields observed
by Activity/Fragment. State is stored in ViewModel
thus survives screen rotation.
object MainViewState : ViewState {
val user = DefaultValueLiveData<User>(User.EMPTY)
}
Layout file containing proper DataBinding variables initialization. Make sure correct types are defined.
<layout xmlns:android="http://schemas.android.com/apk/res/android">
<data>
<variable name="view" type="app.futured.arkitekt.sample.ui.main.MainView"/>
<variable name="viewModel" type="app.futured.arkitekt.sample.ui.main.MainViewModel"/>
<variable name="viewState" type="app.futured.arkitekt.sample.ui.main.MainViewState"/>
</data>
<LinearLayout
android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical"
android:gravity="center">
</LinearLayout>
</layout>
Modules cr-usecases
and rx-usecases
contains set of base classes useful for easy execution of
background tasks based on Coroutines or RxJava streams respectively. In terms of Coroutines
two base types are available - UseCase
(single result use case) and FlowUseCase
(multi result use case).
RxJava base use cases match base Rx "primitives": ObservableUseCase
, SingleUseCase
, FlowableUseCase
, MaybeUseCase
and finally CompletableUseCase
.
Following example describes how to make an API call and how to deal with result of this call.
class LoginUseCase @Inject constructor(
private val apiManager: ApiManager // Retrofit Service
) : SinglerUseCase<LoginData, User>() {
override fun prepare(args: LoginData): Single<User> {
return apiManager.getUser(args)
}
}
data class LoginData(val email: String, val password: String)
class LoginViewState : ViewState {
// IN - values provided by UI
val email = DefaultValueLiveData("")
val password = DefaultValueLiveData("")
// OUT - Values observed by UI
val fullName = MutableLiveData<String>()
val isLoading = MutableLiveData<Boolean>()
}
class LoginViewModel @Inject constructor(
private val loginUseCase: LoginUseCase // Inject UseCase
) : BaseRxViewModel<LoginViewState>() {
override val viewState = LoginViewState()
fun logIn() = with(viewState) {
loginUseCase.execute(LoginData(email.value, email.password)) {
onStart {
isLoading.value = true
}
onSuccess {
isLoading.value = false
fullName.value = user.fullName // handle success & manipulate state
}
onError {
isLoading.value = false
// handle error
}
}
}
}
Module cr-usecases
allows you to execute use cases synchronously.
fun onButtonClicked() = launchWithHandler {
// ...
val data = useCase.execute().getOrDefault("Default")
// ...
}
execute
method returns a Result
that can be either successful Success
or failed Error
.
launchWithHandler
launches a new coroutine encapsulated with a try-catch block. By default exception thrown in launchWithHandler
is rethrown but it is possible to override this behavior with defaultErrorHandler
or just log these exceptions in logUnhandledException
.
In order to set an application-wide error logger for all handled errors in all use-cases, it is possible to set the following method in the Application
class:
UseCaseErrorHandler.globalOnErrorLogger = { error ->
CustomLogger.logError(error)
}
The globalOnErrorLogger
callback in the UseCaseErrorHandler
will be called for every error thrown in all use-cases that have defined onError receiver in the execute method.
The following execute method will trigger globalOnErrorLogger
:
useCase.execute {
...
onError {
isLoading = false
}
...
}
The following execute method won't trigger globalOnErrorLogger
because onError is not defined and execute method will throw an unhandled exception.
useCase.execute {}
There are two main ways how to reflect data model changes in UI. Through ViewState
observation
or one-shot Events
.
You can observe state changes and reflect these changes in UI via DataBinding observation directly in xml layout:
<layout xmlns:android="http://schemas.android.com/apk/res/android">
<data>
<variable name="view" type="app.futured.arkitekt.sample.ui.detail.DetailView"/>
<variable name="viewModel" type="app.futured.arkitekt.sample.ui.detail.DetailViewModel"/>
<variable name="viewState" type="app.futured.arkitekt.sample.ui.detail.DetailViewState"/>
</data>
<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@{viewState.myTextLiveData}"/>
</layout>
Events are one-shot messages sent from ViewModel
to an Activity/Fragment. They
are based on LiveData
bus. Events are guaranteed to be delivered only once even when
there is screen rotation in progress. Basic event communication might look like this:
sealed class MainEvent : Event<MainViewState>()
object ShowDetailEvent : MainEvent()
class MainViewModel @Inject constructor() : BaseViewModel<MainViewState>() {
override val viewState = MainViewState
fun onDetail() {
sendEvent(ShowDetailEvent)
}
}
class MainActivity : BaseActivity<MainViewModel, MainViewState, ActivityMainBinding>(), MainView {
override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
observeEvent(ShowDetailEvent::class) {
startActivity(DetailActivity.getStartIntent(this))
}
}
}
All our applications respect broadly known repository pattern. The main message this
pattern tells: Define Store
(Repository) classes with single entity related business logic
eg. UserStore
, OrderStore
, DeviceStore
etc. Let's see this principle on UserStore
class
from sample app:
@Singleton
class UserStore @Inject constructor() {
private val userRelay = BehaviorRelay.createDefault(User.EMPTY)
fun setUser(user: User) {
userRelay.accept(user)
// ... optionally persist user
}
fun getUser(): Observable<User> {
return userRelay.hide()
}
}
With this approach only one class is responsible for User
related data access. Besides
custom classes, Room library Dao
s or for example Retrofit API interfaces might be
perceived on the same domain level as stores. Thanks to use cases we can easily access,
manipulate and combine this kind of data on background threads.
class GetUserFullNameObservabler @Inject constructor(
private val userStore: UserStore
) : ObservablerUseCase<String>() {
override fun prepare(): Observable<String> {
return userStore.getUser()
.map { "${it.firstName} ${it.lastName}" }
}
}
We strictly respect this injection hierarchy:
Application Component | Injects |
---|---|
Activity/Fragment |
ViewModel |
ViewModel |
ViewState , UseCase |
UseCase |
Store |
Store |
Dao , Persistence , ApiService |
Arkitekt also supports SavedStateHandle
in ViewModel
. To have access to SavedStateHandle
instance you have to use BaseSavedStateViewModelFactory
base class instead of BaseViewModelFactory
in your ViewModelFactory implementation and provide SavedStateRepositoryOwner
in your Activity/Fragment module if using Dagger.
SavedStateHandle
instance is part of BaseViewModel
class so you can access it via savedStateHandle
field. Beware that this field may be null if you don't use BaseSavedStateViewModelFactory
as base class for your ViewModelFactory
implementation.
@Module
class MainActivityModule {
@Provides
fun savedStateRegistryOwner(activity: MainActivity): SavedStateRegistryOwner = activity
}
class MainViewModelFactory @Inject constructor(
savedStateRegistryOwner: SavedStateRegistryOwner,
override val viewModelProvider: Provider<MainViewModel>
) : BaseSavedStateViewModelFactory<MainViewModel>(savedStateRegistryOwner) {
override val viewModelClass = MainViewModel::class
}
In order to create successful applications, it is highly encouraged to write tests for your application. But testing can be tricky sometimes so here are our best practices and utilities that will help you to achieve this goal with this library.
See these tests in example
module for more detailed sample.
core-test dependency contains utilities to help you with ViewModel testing.
ViewModelTest
that should be used as a base class for view model tests since it contains JUnit rules for dealing with a live data and with RxJava in tests.
See these tests in example
module for more detailed sample of view model testing.
The spy object should be used for an easy way of testing that expected events were sent to the view.
viewModel = spyk(SampleViewModel(mockViewState, ...), recordPrivateCalls = true)
...
verify { viewModel.sendEvent(ExpectedEvent) }
When you are using observeWithoutOwner
extensions then everyObserveWithoutOwner
will be helpful for mocking of these methods.
So if a method in the view model looks somehow like this:
viewState.counter.observeWithoutOwner { value ->
viewState.counterText.value = value.toString()
}
then it can be mocked with the following method:
val counterLambda = viewModel.everyObserveWithoutOwner {
viewState.counter
}
...
counterLambda.invoke(1)
invoke(...) call will invoke a lambda argument passed to the observeWithoutOwner
method in the tested method.
Add rx-usecase-test or cr-usecase-test dependencies containing utilities to help you with mocking use cases in a view model.
Since all 'execute' methods for use cases are implemented as extension functions, we created testing methods that will help you to easily mock them.
So if a method in the view model looks somehow like this:
fun onLoginClicked(name: String, password: String) {
loginUseCase.execute(LoginData(name, password)) {
onSuccess = { ... }
}
}
then it can be mocked with the following method:
mockLoginUseCase.mockExecute(args = ...) { Single.just(user) } // For RxJava Use Cases
or
mockLoginUseCase.mockExecute(args = ...) { user } // For Coroutines Use Cases
In case that use case is using nullable arguments:
mockLoginUseCase.mockExecuteNullable(args = ...) { Single.just(user) } // For RxJava Use Cases
or
mockLoginUseCase.mockExecuteNullable(args = ...) { user } // For Coroutines Use Cases
core-test dependency contains utilities to help you with espresso testing.
If you want to test Activities or Fragments then you have few possibilities. You can test them with the mocked implementation of a view model and view state, or you can test them with the real implementation of a view model and view state and with mocked use cases.
Since Fragments and Activities from the dagger module are using AndroidInjection, we created utilities to deal with this.
In your tests, you can use doAfterActivityInjection
and doAfterFragmentInjection
to overwrite injected dependencies. These methods are called right after AndroidInjection
and that allows overwriting of needed dependencies. In the following example, we are replacing the view model with the implementation that is using a view model with mocked dependencies and some random class with mocked implementation.
doAfterActivityInjection<SampleActivity> { activity ->
val provider = SampleViewModel(mockk(), SampleViewState()).asProvider()
activity.viewModelFactory = SampleViewModelFactory(viewModelProvider)
activity.someInjectedClass = mockk()
}
See these tests in example
module for more detailed samples of espresso test that can be executed as local unit tests or connected android tests.
Arkitekt is available under the MIT license. See the LICENSE file for more information.
Created with ❤ at Futured. Inspired by Alfonz library.