Skip to content

Commit

Permalink
Isomorphisms in large categories and large precategories (UniMath#791)
Browse files Browse the repository at this point in the history
  • Loading branch information
EgbertRijke authored Sep 19, 2023
1 parent cdc008d commit eda7bb2
Show file tree
Hide file tree
Showing 12 changed files with 1,169 additions and 143 deletions.
1 change: 1 addition & 0 deletions src/category-theory.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -57,6 +57,7 @@ open import category-theory.groupoids public
open import category-theory.homotopies-natural-transformations-large-precategories public
open import category-theory.initial-objects-in-precategories public
open import category-theory.isomorphisms-in-categories public
open import category-theory.isomorphisms-in-large-categories public
open import category-theory.isomorphisms-in-large-precategories public
open import category-theory.isomorphisms-in-precategories public
open import category-theory.large-categories public
Expand Down
20 changes: 10 additions & 10 deletions src/category-theory/epimorphisms-in-large-precategories.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -64,41 +64,41 @@ module _
where

is-epi-iso-Large-Precategory :
is-epi-Large-Precategory C l3 X Y (hom-iso-Large-Precategory C X Y f)
is-epi-Large-Precategory C l3 X Y (hom-iso-Large-Precategory C f)
is-epi-iso-Large-Precategory Z g h =
is-equiv-is-invertible
( λ P
( inv
( right-unit-law-comp-hom-Large-Precategory C g)) ∙
( ( ap
( λ h' comp-hom-Large-Precategory C g h')
( inv (is-section-hom-inv-iso-Large-Precategory C X Y f))) ∙
( inv (is-section-hom-inv-iso-Large-Precategory C f))) ∙
( ( inv
( associative-comp-hom-Large-Precategory C
( g)
( hom-iso-Large-Precategory C X Y f)
( hom-inv-iso-Large-Precategory C X Y f))) ∙
( hom-iso-Large-Precategory C f)
( hom-inv-iso-Large-Precategory C f))) ∙
( ( ap
( λ h'
comp-hom-Large-Precategory
( C)
( h')
( hom-inv-iso-Large-Precategory C X Y f))
( hom-inv-iso-Large-Precategory C f))
( P)) ∙
( ( associative-comp-hom-Large-Precategory C
( h)
( hom-iso-Large-Precategory C X Y f)
( hom-inv-iso-Large-Precategory C X Y f)) ∙
( hom-iso-Large-Precategory C f)
( hom-inv-iso-Large-Precategory C f)) ∙
( ( ap
( comp-hom-Large-Precategory C h)
( is-section-hom-inv-iso-Large-Precategory C X Y f)) ∙
( is-section-hom-inv-iso-Large-Precategory C f)) ∙
( right-unit-law-comp-hom-Large-Precategory C h)))))))
( λ p
eq-is-prop
( is-set-type-hom-Large-Precategory C X Z
( comp-hom-Large-Precategory C g
( hom-iso-Large-Precategory C X Y f))
( hom-iso-Large-Precategory C f))
( comp-hom-Large-Precategory C h
( hom-iso-Large-Precategory C X Y f))))
( hom-iso-Large-Precategory C f))))
( λ p eq-is-prop (is-set-type-hom-Large-Precategory C Y Z g h))
```
Loading

0 comments on commit eda7bb2

Please sign in to comment.