Skip to content

Commit

Permalink
refactor isomorphisms in small (pre-)categories
Browse files Browse the repository at this point in the history
  • Loading branch information
fredrik-bakke committed Sep 20, 2023
1 parent f47cf60 commit d9a8a02
Show file tree
Hide file tree
Showing 18 changed files with 1,130 additions and 617 deletions.
2 changes: 1 addition & 1 deletion src/category-theory/categories.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -157,7 +157,7 @@ module _
( iso-Precategory (precategory-Category C) x y)
( iso-eq-Precategory (precategory-Category C) x y)
( is-category-Category C x y)
( is-set-iso-Precategory (precategory-Category C) x y)
( is-set-iso-Precategory (precategory-Category C))

obj-Category-1-Type : 1-Type l1
pr1 obj-Category-1-Type = obj-Category C
Expand Down
13 changes: 9 additions & 4 deletions src/category-theory/dependent-products-of-precategories.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -122,7 +122,9 @@ module _
( i)
pr2 (pr2 (is-fiberwise-iso-is-iso-Π-Precategory f is-iso-f i)) =
htpy-eq
( is-retraction-hom-inv-is-iso-hom-Precategory (Π-Precategory I C) is-iso-f)
( is-retraction-hom-inv-is-iso-hom-Precategory
( Π-Precategory I C)
( is-iso-f))
( i)

fiberwise-iso-iso-Π-Precategory :
Expand All @@ -149,7 +151,9 @@ module _
pr2 (pr2 (is-iso-Π-is-fiberwise-iso-Precategory f is-fiberwise-iso-f)) =
eq-htpy
( λ i
is-retraction-hom-inv-is-iso-hom-Precategory (C i) (is-fiberwise-iso-f i))
is-retraction-hom-inv-is-iso-hom-Precategory
( C i)
( is-fiberwise-iso-f i))

iso-Π-fiberwise-iso-Precategory :
((i : I) iso-Precategory (C i) (x i) (y i))
Expand Down Expand Up @@ -202,9 +206,10 @@ module _
is-equiv-is-invertible
( iso-Π-fiberwise-iso-Precategory)
( λ e
eq-htpy (λ i eq-type-subtype (is-iso-hom-Precategory-Prop (C i)) refl))
eq-htpy
( λ i eq-type-subtype (is-iso-prop-hom-Precategory (C i)) refl))
( λ e
eq-type-subtype (is-iso-hom-Precategory-Prop (Π-Precategory I C)) refl)
eq-type-subtype (is-iso-prop-hom-Precategory (Π-Precategory I C)) refl)

equiv-fiberwise-iso-iso-Π-Precategory :
( iso-Precategory (Π-Precategory I C) x y) ≃
Expand Down
Loading

0 comments on commit d9a8a02

Please sign in to comment.