Skip to content

Commit

Permalink
pre-commit
Browse files Browse the repository at this point in the history
  • Loading branch information
fredrik-bakke committed Sep 18, 2023
1 parent 08af608 commit 9c166ae
Show file tree
Hide file tree
Showing 8 changed files with 64 additions and 39 deletions.
16 changes: 12 additions & 4 deletions src/category-theory/adjunctions-large-precategories.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -59,8 +59,12 @@ module _
equiv-is-adjoint-pair-Large-Precategory :
{l1 l2 : Level} (X : obj-Large-Precategory C l1)
(Y : obj-Large-Precategory D l2)
( type-hom-Large-Precategory C X (map-obj-functor-Large-Precategory G Y)) ≃
( type-hom-Large-Precategory D (map-obj-functor-Large-Precategory F X) Y)
( type-hom-Large-Precategory C
( X)
( map-obj-functor-Large-Precategory G Y)) ≃
( type-hom-Large-Precategory D
( map-obj-functor-Large-Precategory F X)
( Y))
naturality-equiv-is-adjoint-pair-Large-Precategory :
{ l1 l2 l3 l4 : Level}
{ X1 : obj-Large-Precategory C l1} {X2 : obj-Large-Precategory C l2}
Expand Down Expand Up @@ -121,7 +125,9 @@ module _
( map-hom-functor-Large-Precategory F f))
( λ h
comp-hom-Large-Precategory C
( comp-hom-Large-Precategory C (map-hom-functor-Large-Precategory G g) h)
( comp-hom-Large-Precategory C
( map-hom-functor-Large-Precategory G g)
( h))
( f))
( map-inv-equiv-is-adjoint-pair-Large-Precategory H X2 Y2)
naturality-inv-equiv-is-adjoint-pair-Large-Precategory
Expand All @@ -130,7 +136,9 @@ module _
( equiv-is-adjoint-pair-Large-Precategory H X1 Y1)
( λ h
comp-hom-Large-Precategory C
( comp-hom-Large-Precategory C (map-hom-functor-Large-Precategory G g) h)
( comp-hom-Large-Precategory C
( map-hom-functor-Large-Precategory G g)
( h))
( f))
( λ h
comp-hom-Large-Precategory D
Expand Down
4 changes: 3 additions & 1 deletion src/category-theory/functors-categories.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -43,7 +43,9 @@ module _
(F : functor-Category)
{x y : obj-Category C}
(f : type-hom-Category C x y)
type-hom-Category D (map-obj-functor-Category F x) (map-obj-functor-Category F y)
type-hom-Category D
( map-obj-functor-Category F x)
( map-obj-functor-Category F y)
map-hom-functor-Category F = pr1 (pr2 F)

preserves-comp-functor-Category :
Expand Down
6 changes: 4 additions & 2 deletions src/category-theory/functors-large-precategories.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -57,13 +57,15 @@ module _
{ Z : obj-Large-Precategory C l3}
( g : type-hom-Large-Precategory C Y Z)
( f : type-hom-Large-Precategory C X Y)
( map-hom-functor-Large-Precategory (comp-hom-Large-Precategory C g f)) =
( map-hom-functor-Large-Precategory
( comp-hom-Large-Precategory C g f)) =
( comp-hom-Large-Precategory D
( map-hom-functor-Large-Precategory g)
( map-hom-functor-Large-Precategory f))
preserves-id-functor-Large-Precategory :
{ l1 : Level} {X : obj-Large-Precategory C l1}
( map-hom-functor-Large-Precategory (id-hom-Large-Precategory C {X = X})) =
( map-hom-functor-Large-Precategory
( id-hom-Large-Precategory C {X = X})) =
( id-hom-Large-Precategory D {X = map-obj-functor-Large-Precategory X})

open functor-Large-Precategory public
Expand Down
3 changes: 2 additions & 1 deletion src/category-theory/functors-precategories.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -122,7 +122,8 @@ pr2 (pr2 (pr2 (comp-functor-Precategory C D E G F))) x =
( ap
( map-hom-functor-Precategory D E G)
( preserves-id-functor-Precategory C D F x)) ∙
( preserves-id-functor-Precategory D E G (map-obj-functor-Precategory C D F x))
( preserves-id-functor-Precategory D E G
( map-obj-functor-Precategory C D F x))
```

## Properties
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,8 @@ module category-theory.natural-transformations-large-precategories where
open import category-theory.functors-large-precategories
open import category-theory.large-precategories

open import foundation.action-on-identifications-functions
open import foundation.dependent-pair-types
open import foundation.identity-types
open import foundation.universe-levels
```
Expand All @@ -18,8 +20,10 @@ open import foundation.universe-levels

## Idea

Given large precategories `C` and `D`, a natural transformation from a functor
`F : C → D` to `G : C → D` consists of :
Given [large precategories](category-theory.large-precategories.md) `C` and `D`,
a **natural transformation** from a
[functor](category-theory.functors-large-precategories.md) `F : C D` to
`G : C → D` consists of :

- a family of morphisms `γ : (x : C) hom (F x) (G x)` such that the following
identity holds:
Expand Down Expand Up @@ -53,45 +57,49 @@ module _
where
constructor make-natural-transformation
field
obj-natural-transformation-Large-Precategory :
components-natural-transformation-Large-Precategory :
{l1 : Level} (X : obj-Large-Precategory C l1)
type-hom-Large-Precategory D
( obj-functor-Large-Precategory F X)
( obj-functor-Large-Precategory G X)
( map-obj-functor-Large-Precategory F X)
( map-obj-functor-Large-Precategory G X)
coherence-square-natural-transformation-Large-Precategory :
{l1 l2 : Level} {X : obj-Large-Precategory C l1}
{Y : obj-Large-Precategory C l2}
(f : type-hom-Large-Precategory C X Y)
square-Large-Precategory D
( obj-natural-transformation-Large-Precategory X)
( hom-functor-Large-Precategory F f)
( hom-functor-Large-Precategory G f)
( obj-natural-transformation-Large-Precategory Y)
( components-natural-transformation-Large-Precategory X)
( map-hom-functor-Large-Precategory F f)
( map-hom-functor-Large-Precategory G f)
( components-natural-transformation-Large-Precategory Y)

open natural-transformation-Large-Precategory public
```

## Examples
## Properties

### The identity natural transformation

Every functor comes equipped with an identity natural transformation.

```agda
id-natural-transformation-Large-Precategory :
{ αC αD γF γG : Level Level}
{ βC βD : Level Level Level}
{ C : Large-Precategory αC βC} {D : Large-Precategory αD βD}
( F : functor-Large-Precategory C D γF)
natural-transformation-Large-Precategory F F
obj-natural-transformation-Large-Precategory
( id-natural-transformation-Large-Precategory {D = D} F) X =
id-hom-Large-Precategory D
coherence-square-natural-transformation-Large-Precategory
( id-natural-transformation-Large-Precategory {D = D} F) f =
( left-unit-law-comp-hom-Large-Precategory D
( hom-functor-Large-Precategory F f)) ∙
( inv
( right-unit-law-comp-hom-Large-Precategory D
( hom-functor-Large-Precategory F f)))
module _
{ αC αD γF : Level Level}
{ βC βD : Level Level Level}
{ C : Large-Precategory αC βC}
{ D : Large-Precategory αD βD}
where

id-natural-transformation-Large-Precategory :
( F : functor-Large-Precategory C D γF)
natural-transformation-Large-Precategory F F
components-natural-transformation-Large-Precategory
( id-natural-transformation-Large-Precategory F) X =
id-hom-Large-Precategory D
coherence-square-natural-transformation-Large-Precategory
( id-natural-transformation-Large-Precategory F) f =
( left-unit-law-comp-hom-Large-Precategory D
( map-hom-functor-Large-Precategory F f)) ∙
( inv
( right-unit-law-comp-hom-Large-Precategory D
( map-hom-functor-Large-Precategory F f)))
```
Original file line number Diff line number Diff line change
Expand Up @@ -93,9 +93,11 @@ module _
(F : functor-Precategory C D) natural-transformation-Precategory C D F F
pr1 (id-natural-transformation-Precategory F) x = id-hom-Precategory D
pr2 (id-natural-transformation-Precategory F) f =
( right-unit-law-comp-hom-Precategory D (map-hom-functor-Precategory C D F f)) ∙
( right-unit-law-comp-hom-Precategory D
( map-hom-functor-Precategory C D F f)) ∙
( inv
( left-unit-law-comp-hom-Precategory D (map-hom-functor-Precategory C D F f)))
( left-unit-law-comp-hom-Precategory D
( map-hom-functor-Precategory C D F f)))

comp-natural-transformation-Precategory :
(F G H : functor-Precategory C D)
Expand Down Expand Up @@ -200,7 +202,9 @@ module _
is-set-type-hom-Precategory D
( map-obj-functor-Precategory C D F x)
( map-obj-functor-Precategory C D G x)))
( λ α is-set-type-Set (set-Prop (is-natural-transformation-Precategory-Prop α)))
( λ α
is-set-type-Set
( set-Prop (is-natural-transformation-Precategory-Prop α)))

natural-transformation-Precategory-Set :
Set (l1 ⊔ l2 ⊔ l4)
Expand Down
2 changes: 1 addition & 1 deletion src/foundation/booleans.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -66,7 +66,7 @@ compute-raise-bool : (l : Level) → bool ≃ raise-bool l
compute-raise-bool l = compute-raise l bool
```

### The representing propositions of bool
### The standard propositions associated to the constructors of bool

```agda
prop-bool : bool Prop lzero
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -91,7 +91,7 @@ module _
( λ l l)
map-obj-functor-Large-Precategory subst-Abstract-Group-Action =
obj-subst-Abstract-Group-Action
map-hom-functor-Large-Precategory subst-Abstract-Group-Action {l1} {l2} {X} {Y} =
map-hom-functor-Large-Precategory subst-Abstract-Group-Action {X = X} {Y} =
hom-subst-Abstract-Group-Action X Y
preserves-comp-functor-Large-Precategory subst-Abstract-Group-Action
{l1} {l2} {l3} {X} {Y} {Z} =
Expand Down

0 comments on commit 9c166ae

Please sign in to comment.