Skip to content

Commit

Permalink
split up definition functor-precategory-Precategory
Browse files Browse the repository at this point in the history
  • Loading branch information
fredrik-bakke committed Sep 19, 2023
1 parent 3e22d2a commit 30bfd00
Showing 1 changed file with 74 additions and 9 deletions.
83 changes: 74 additions & 9 deletions src/category-theory/precategory-of-functors.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,7 @@ open import category-theory.natural-transformations-precategories
open import category-theory.precategories

open import foundation.dependent-pair-types
open import foundation.identity-types
open import foundation.universe-levels
```

Expand All @@ -33,20 +34,84 @@ module _
{l1 l2 l3 l4 : Level} (C : Precategory l1 l2) (D : Precategory l3 l4)
where

comp-hom-functor-precategory-Precategory :
{F G H : functor-Precategory C D}
natural-transformation-Precategory C D G H
natural-transformation-Precategory C D F G
natural-transformation-Precategory C D F H
comp-hom-functor-precategory-Precategory {F} {G} {H} =
comp-natural-transformation-Precategory C D F G H

associative-comp-hom-functor-precategory-Precategory :
{F G H I : functor-Precategory C D}
(h : natural-transformation-Precategory C D H I)
(g : natural-transformation-Precategory C D G H)
(f : natural-transformation-Precategory C D F G)
(comp-natural-transformation-Precategory C D F G I
( comp-natural-transformation-Precategory C D G H I h g)
( f)) =
( comp-natural-transformation-Precategory C D F H I
( h)
( comp-natural-transformation-Precategory C D F G H g f))
associative-comp-hom-functor-precategory-Precategory {F} {G} {H} {I} h g f =
associative-comp-natural-transformation-Precategory
C D {F} {G} {H} {I} f g h

associative-composition-structure-functor-precategory-Precategory :
associative-composition-structure-Set
( natural-transformation-Precategory-Set C D)
pr1 associative-composition-structure-functor-precategory-Precategory
{F} {G} {H} =
comp-hom-functor-precategory-Precategory {F} {G} {H}
pr2 associative-composition-structure-functor-precategory-Precategory
{F} {G} {H} {I} =
associative-comp-hom-functor-precategory-Precategory {F} {G} {H} {I}

id-hom-functor-precategory-Precategory :
(F : functor-Precategory C D) natural-transformation-Precategory C D F F
id-hom-functor-precategory-Precategory =
id-natural-transformation-Precategory C D

left-unit-law-comp-hom-functor-precategory-Precategory :
{F G : functor-Precategory C D}
: natural-transformation-Precategory C D F G)
( comp-natural-transformation-Precategory C D F G G
( id-natural-transformation-Precategory C D G) α) =
( α)
left-unit-law-comp-hom-functor-precategory-Precategory {F} {G} =
left-unit-law-comp-natural-transformation-Precategory C D {F} {G}

right-unit-law-comp-hom-functor-precategory-Precategory :
{F G : functor-Precategory C D}
: natural-transformation-Precategory C D F G)
( comp-natural-transformation-Precategory C D F F G
α (id-natural-transformation-Precategory C D F)) =
( α)
right-unit-law-comp-hom-functor-precategory-Precategory {F} {G} =
right-unit-law-comp-natural-transformation-Precategory C D {F} {G}

is-unital-composition-structure-functor-precategory-Precategory :
is-unital-composition-structure-Set
( natural-transformation-Precategory-Set C D)
( associative-composition-structure-functor-precategory-Precategory)
pr1 is-unital-composition-structure-functor-precategory-Precategory =
id-hom-functor-precategory-Precategory
pr1
( pr2 is-unital-composition-structure-functor-precategory-Precategory)
{ F} {G} =
left-unit-law-comp-hom-functor-precategory-Precategory {F} {G}
pr2
( pr2 is-unital-composition-structure-functor-precategory-Precategory)
{ F} {G} =
right-unit-law-comp-hom-functor-precategory-Precategory {F} {G}

functor-precategory-Precategory :
Precategory (l1 ⊔ l2 ⊔ l3 ⊔ l4) (l1 ⊔ l2 ⊔ l4)
pr1 functor-precategory-Precategory = functor-Precategory C D
pr1 (pr2 functor-precategory-Precategory) =
natural-transformation-Precategory-Set C D
pr1 (pr2 (pr2 functor-precategory-Precategory)) =
( λ {F} {G} {H} comp-natural-transformation-Precategory C D F G H) ,
( λ {F} {G} {H} {I} h g f
associative-comp-natural-transformation-Precategory
C D {F} {G} {H} {I} f g h)
associative-composition-structure-functor-precategory-Precategory
pr2 (pr2 (pr2 functor-precategory-Precategory)) =
(id-natural-transformation-Precategory C D) ,
( λ {F} {G}
left-unit-law-comp-natural-transformation-Precategory C D {F} {G}) ,
( λ {F} {G}
right-unit-law-comp-natural-transformation-Precategory C D {F} {G})
is-unital-composition-structure-functor-precategory-Precategory
```

0 comments on commit 30bfd00

Please sign in to comment.