-
Notifications
You must be signed in to change notification settings - Fork 0
/
newEstSelfMotionOpt.m
67 lines (66 loc) · 2.38 KB
/
newEstSelfMotionOpt.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
function opt = newEstSelfMotionOpt(fHandle, name, label)
% newEstSelfMotionOpt
% fhandle - Function handle to algorithm. SEE function.
% name - Name of algorithm. Only for the purpose to save.
% label - Label to be displayed in legend to identify this
% algorithm.
%
% RETURNS
% opt - Structure with the above listed fields.
%
% DESCRIPTION
% Creates structure for identification of algorithm and input/output
% arguments when calling this algorithm.
%
% Copyright (C) 2012 Florian Raudies, 04/12/2012, Boston University.
% License, GNU GPL, free software, without any warranty.
%
% General information.
opt.fHandle = fHandle;
opt.name = name;
opt.label = label;
opt.fResidual = @residualBilinear;
opt.unbias = 1;
opt.mfunc = 0;
opt.ransac = 0;
opt.em = 0;
% Hierarchical grid optimization (HG) and definition of intervals for
% voting spaces.
opt.tuneOptimizeType = 'hg';
opt.TunePhi = linspace(2*pi/7, 2*pi, 7);
opt.TuneRad = exp2space(-4, 2, 7);
opt.TuneOmegaX = linspace(-10, +10, 5)/180*pi;
opt.TuneOmegaY = linspace(-10, +10, 5)/180*pi;
opt.TuneOmegaZ = linspace(-10, +10, 5)/180*pi;
opt.TuneDepth = exp2space(1, 5, 5);
opt.tuneSigmaSpeed = sqrt(0.5);
% Parameters for fix-point iteration (FP).
opt.fixPtMaxIter = 500;
opt.fixPtInitNum = 15;
opt.fixPtEtaVel = 5*10^-3;
opt.fixPtEtaOmega = 10^-4;
% Parameters for Gauss Newton iteration (GN).
opt.gnMaxIter = 500;
opt.gnInitNum = 15;
opt.gnEtaDVel = 10^-7;
opt.gnLambdaRho = 0.25;
% Parameters for optimization with m-function(s).
opt.mFuncMaxIter = 50;
opt.mFuncEtaW = 10^-4;
opt.mFuncSigma = 10^-6;
opt.mFuncRho = 0;
% Parameters for Random Sample Consensus (RANSAC).
opt.ransacInitNum = 9;
opt.ransacTriesNum = 10^2;
opt.ransacEtaVel = 10^-3;
opt.ransacEtaOmega = 10^-3;
opt.ransacSetNumFrac = 1/3;
% Parameters for Expectation Maximization algorithm (EM).
opt.emMaxIter = 25;
opt.emModelNum = 2;
opt.emModelSigma = 10^-2;
opt.emEtaDrop = 10^-7;
opt.emEtaVel = 10^-3;
opt.emEtaOmega = 10^-3;
opt.emEtaPi = 10^-4;
opt.emEtaSigma = 10^-4;