forked from PaddlePaddle/Paddle
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[NPU] Support npu op logicalnot_op (PaddlePaddle#31534)
- Loading branch information
1 parent
dc1f62b
commit 1ead5a0
Showing
2 changed files
with
179 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,57 @@ | ||
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#ifdef PADDLE_WITH_ASCEND_CL | ||
#include <memory> | ||
#include <string> | ||
|
||
#include "paddle/fluid/operators/controlflow/logical_op.h" | ||
#include "paddle/fluid/operators/npu_op_runner.h" | ||
|
||
namespace paddle { | ||
namespace operators { | ||
|
||
using Tensor = framework::Tensor; | ||
|
||
template <typename DeviceContext, typename T> | ||
class LogicalNotNPUKernel : public framework::OpKernel<T> { | ||
public: | ||
void Compute(const framework::ExecutionContext& ctx) const override { | ||
auto* x = ctx.Input<Tensor>("X"); | ||
|
||
auto* out = ctx.Output<Tensor>("Out"); | ||
|
||
auto place = ctx.GetPlace(); | ||
|
||
out->mutable_data<T>(place); | ||
|
||
auto stream = | ||
ctx.template device_context<paddle::platform::NPUDeviceContext>() | ||
.stream(); | ||
|
||
auto runner = NpuOpRunner("LogicalNot", {*x}, {*out}, {}); | ||
runner.Run(stream); | ||
} | ||
}; | ||
|
||
} // namespace operators | ||
} // namespace paddle | ||
|
||
namespace ops = paddle::operators; | ||
|
||
REGISTER_OP_NPU_KERNEL( | ||
logical_not, | ||
ops::LogicalNotNPUKernel<paddle::platform::NPUDeviceContext, bool>); | ||
|
||
#endif |
122 changes: 122 additions & 0 deletions
122
python/paddle/fluid/tests/unittests/npu/test_logical_op_npu.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,122 @@ | ||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
from __future__ import print_function | ||
|
||
import numpy as np | ||
import unittest | ||
import sys | ||
sys.path.append("..") | ||
from op_test import OpTest | ||
import paddle | ||
import paddle.fluid as fluid | ||
|
||
paddle.enable_static() | ||
SEED = 2021 | ||
|
||
|
||
@unittest.skipIf(not paddle.is_compiled_with_npu(), | ||
"core is not compiled with NPU") | ||
class TestLogicalNot(OpTest): | ||
def setUp(self): | ||
self.set_npu() | ||
self.op_type = "logical_not" | ||
self.place = paddle.NPUPlace(4) | ||
|
||
self.init_dtype() | ||
np.random.seed(SEED) | ||
x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype) | ||
out = np.logical_not(x) | ||
|
||
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)} | ||
self.attrs = {} | ||
self.outputs = {'Out': out} | ||
|
||
def set_npu(self): | ||
self.__class__.use_npu = True | ||
|
||
def init_dtype(self): | ||
self.dtype = np.bool | ||
|
||
def test_check_output(self): | ||
self.check_output_with_place(self.place, check_dygraph=False) | ||
|
||
# TODO(ascendrc): Add grad test | ||
# def test_check_grad(self): | ||
# if self.dtype == np.float16: | ||
# return | ||
# self.check_grad(['X'], 'Out') | ||
# | ||
|
||
|
||
@unittest.skipIf(not paddle.is_compiled_with_npu(), | ||
"core is not compiled with NPU") | ||
class TestLogcialNotNet(unittest.TestCase): | ||
def _test(self, run_npu=True): | ||
main_prog = paddle.static.Program() | ||
startup_prog = paddle.static.Program() | ||
main_prog.random_seed = SEED | ||
startup_prog.random_seed = SEED | ||
np.random.seed(SEED) | ||
|
||
a_np = np.random.random(size=(32, 32)).astype('bool') | ||
label_np = np.random.randint(2, size=(32, 1)).astype('int64') | ||
|
||
with paddle.static.program_guard(main_prog, startup_prog): | ||
a = paddle.static.data(name="a", shape=[32, 32], dtype='bool') | ||
label = paddle.static.data( | ||
name="label", shape=[32, 1], dtype='int64') | ||
|
||
c = paddle.logical_not(a) | ||
d = paddle.cast(c, dtype="float32") | ||
|
||
fc_1 = fluid.layers.fc(input=d, size=128) | ||
prediction = fluid.layers.fc(input=fc_1, size=2, act='softmax') | ||
|
||
cost = fluid.layers.cross_entropy(input=prediction, label=label) | ||
loss = fluid.layers.reduce_mean(cost) | ||
sgd = fluid.optimizer.SGD(learning_rate=0.01) | ||
sgd.minimize(loss) | ||
|
||
if run_npu: | ||
place = paddle.NPUPlace(4) | ||
else: | ||
place = paddle.CPUPlace() | ||
|
||
exe = paddle.static.Executor(place) | ||
exe.run(startup_prog) | ||
|
||
print("Start run on {}".format(place)) | ||
for epoch in range(100): | ||
|
||
pred_res, loss_res = exe.run(main_prog, | ||
feed={"a": a_np, | ||
"label": label_np}, | ||
fetch_list=[prediction, loss]) | ||
if epoch % 10 == 0: | ||
print("Epoch {} | Prediction[0]: {}, Loss: {}".format( | ||
epoch, pred_res[0], loss_res)) | ||
|
||
return pred_res, loss_res | ||
|
||
def test_npu(self): | ||
cpu_pred, cpu_loss = self._test(False) | ||
npu_pred, npu_loss = self._test(True) | ||
|
||
self.assertTrue(np.allclose(npu_pred, cpu_pred)) | ||
self.assertTrue(np.allclose(npu_loss, cpu_loss)) | ||
|
||
|
||
if __name__ == '__main__': | ||
unittest.main() |