Skip to content
/ PDGN Public

Progressive Point Cloud Deconvolution Generation Network (PDGN)

License

Notifications You must be signed in to change notification settings

fpthink/PDGN

Repository files navigation

Progressive Point Cloud Deconvolution Generation Network

by Le Hui, Rui Xu, Jin Xie, Jianjun Qian, and Jian Yang, details are in paper.

Usage

  1. requires:

    CUDA10.1
    Pytorch 1.7.1
    Python3.7
    
  2. build ops:

    cd PDGN
    cd lib/pointops && python setup.py install && cd ../../
    
    cd evaluation/pytorch_structural_losses/
    make clean
    make
    
  3. Dataset:

    We follow DPM and use its processed dataset. Please download shapenet.hdf5

  4. Train:

    CUDA_VISIBLE_DEVICES=0 python main.py \
       --network PDGNet_v2 \
       --model_dir PDGNet_v2 \
       --batch_size 35 \
       --max_epoch 3000 \
       --snapshot 50 \
       --dataset shapenet15k \
       --choice chair \
       --phase train \
       --data_root dataset/shapenet.hdf5
    
  5. Test (may take about 2 hours):

    CUDA_VISIBLE_DEVICES=0 python main.py \
       --network PDGNet_v2 \
       --batch_size 50 \
       --pretrain_model_G 600_chair_G.pth \
       --pretrain_model_D 600_chair_D.pth \
       --model_dir PDGNet_v2 \
       --choice chair \
       --phase test
    

Results

  1. Results in Chair category (taken from paper DPM):

    Model JSD ↓ MMD
    -CD ↓
    MMD
    -EMD ↓
    COV
    -CD ↑
    COV
    -EMD ↑
    1-NNA
    -CD ↓
    1-NNA
    -EMD ↓
    PC-GAN (ICML 18) 6.649 13.436 3.104 46.23 22.14 69.67 100.00
    GCN-GAN (ICLR 18) 21.708 15.354 2.213 39.84 35.09 77.86 95.80
    TreeGAN (ICCV 19) 13.282 14.936 3.613 38.02 6.77 74.92 100.00
    PointFlow (ICCV 19) 12.474 13.631 1.856 41.86 43.38 66.13 68.40
    ShapeGF (ECCV 20) 5.996 13.175 1.785 48.53 46.71 56.17 62.69
    PDGN (ECCV 20) 6.764 12.852 2.082 53.48 39.33 60.71 75.53
    DPM (CVPR 21) 7.797 12.276 1.784 48.94 47.52 60.11 69.06
  2. Pretrained model in Chair categroy:

    (1) Download and put in path: ./checkpoint/PDGNet_v2/PDGNet_v2

    (2) Run the test code.

  3. We will provide more pretrained models for other categories soon.

Citation

If you find the code useful, please consider citing:

@inproceedings{hui2020pdgn,
  title={Progressive Point Cloud Deconvolution Generation Network},
  author={Hui, Le and Xu, Rui and Xie, Jin and Qian, Jianjun and Yang, Jian},
  booktitle={ECCV},
  year={2020}
}

Acknowledgement

Our Cuda code is from PointWeb.

Our data processing and evaluation code is from diffusion-point-cloud.

About

Progressive Point Cloud Deconvolution Generation Network (PDGN)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published