Skip to content

fmsnew/nas-bench-nlp-release

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

NAS-Bench-NLP

Preparation:

  1. unzip data/datasets.zip, train_logs_single_run/logs.zip, train_logs_multi_runs/logs.zip, and train_logs_wikitext-2/logs.zip;
  2. install requirements.txt (currently contains unuseed packages; to be cleaned);
  3. optionally, copy models from the dropbox (sample: https://www.dropbox.com/sh/qviytkrlbu2cy5u/AABy59Bb9CpiS7D4osbvY_xva?dl=0, all models: https://www.dropbox.com/scl/fo/4r36x7wqb6gvzcmz8zo61/AIzcRCPZhmzORxJdSI2AdtY?rlkey=516wk0knseuuow45wn4mhy0ak&e=1&dl=0) to the folder models_weights.

Usage:

  • search_space_examples.ipynb demonstrates how to generate architectures from the search space;
  • to train a model, run script main_one_model_train.py --recepie_id=, where the list of architectures is by defaultin data/recepies_example.json; logs and final weights will be stored in tmp folder by default (see script argumens for more info);
  • reproduce_model.ipynb demonstrates how to load and apply the trained model;
  • make_arch_embedding.ipynb creates graph2vec features for architectures;
  • search_space_analysis.ipynb reproduces figures from the analysis section in the paper;
  • benchmarking_examples.ipynb shows how NAS methods can be tested based on precomputed results in the logs.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published