Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Adds comet-ml plugin example #1702

Merged
merged 1 commit into from
Nov 13, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions docs/integrations/index.md
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,8 @@ Flytekit functionality. For comparison, these plugins can be thought of like
:header-rows: 0
:widths: 20 30
* - {doc}`Comet </auto_examples/comet_ml_plugin/index>`
- `comet-ml`: Comet’s machine learning platform.
* - {doc}`DBT </auto_examples/dbt_plugin/index>`
- Run and test your `dbt` pipelines in Flyte.
* - {doc}`Dolt </auto_examples/dolt_plugin/index>`
Expand Down Expand Up @@ -195,6 +197,7 @@ constructs natively within other orchestration tools.
:hidden:
:caption: Flytekit plugins

Comet </auto_examples/comet_ml_plugin/index>
DBT </auto_examples/dbt_plugin/index>
Dolt </auto_examples/dolt_plugin/index>
DuckDB </auto_examples/duckdb_plugin/index>
Expand Down
27 changes: 27 additions & 0 deletions examples/comet_ml_plugin/Dockerfile
Original file line number Diff line number Diff line change
@@ -0,0 +1,27 @@
FROM python:3.11-slim-bookworm
LABEL org.opencontainers.image.source https://github.com/flyteorg/flytesnacks

WORKDIR /root
ENV VENV /opt/venv
ENV LANG C.UTF-8
ENV LC_ALL C.UTF-8
ENV PYTHONPATH /root

WORKDIR /root

ENV VENV /opt/venv
# Virtual environment
RUN python3 -m venv ${VENV}
ENV PATH="${VENV}/bin:$PATH"

# Install Python dependencies
COPY requirements.in /root
RUN pip install -r /root/requirements.in

# Copy the actual code
COPY . /root

# This tag is supplied by the build script and will be used to determine the version
# when registering tasks, workflows, and launch plans
ARG tag
ENV FLYTE_INTERNAL_IMAGE $tag
36 changes: 36 additions & 0 deletions examples/comet_ml_plugin/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,36 @@
(comet_ml)=

# Comet ML

```{eval-rst}
.. tags:: Integration, Data, Metrics, Intermediate
```

Comet’s machine learning platform integrates with your existing infrastructure and tools so you can manage, visualize, and optimize models from training runs to production monitoring. This plugin integrates Flyte with Comet by configuring links between the two platforms.

To install the plugin, run:

```bash
pip install flytekitplugins-comet-ml
```

Comet requires an API key to authenticate with their platform. In the above example, a secret is created using
[Flyte's Secrets manager](https://docs.flyte.org/en/latest/user_guide/productionizing/secrets.html).

To enable linking from the Flyte side panel to Comet.ml, add the following to Flyte's configuration:

```yaml
plugins:
logs:
dynamic-log-links:
- comet-ml-execution-id:
displayName: Comet
templateUris: "{{ .taskConfig.host }}/{{ .taskConfig.workspace }}/{{ .taskConfig.project_name }}/{{ .executionName }}{{ .nodeId }}{{ .taskRetryAttempt }}{{ .taskConfig.link_suffix }}"
- comet-ml-custom-id:
displayName: Comet
templateUris: "{{ .taskConfig.host }}/{{ .taskConfig.workspace }}/{{ .taskConfig.project_name }}/{{ .taskConfig.experiment_key }}"
```

```{auto-examples-toc}
comet_ml_example
```
Empty file.
157 changes: 157 additions & 0 deletions examples/comet_ml_plugin/comet_ml_plugin/comet_ml_example.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,157 @@
# %% [markdown]
# (comet_ml_example)=
#
# # Comet Example
# Comet’s machine learning platform integrates with your existing infrastructure and
# tools so you can manage, visualize, and optimize models from training runs to
# production monitoring. This plugin integrates Flyte with Comet by configuring
# links between the two platforms.
import os
import os.path

from flytekit import (
ImageSpec,
Secret,
current_context,
task,
workflow,
)
from flytekit.types.directory import FlyteDirectory
from flytekitplugins.comet_ml import comet_ml_login

# %% [markdown]
# First, we specify the project and workspace that we will use with Comet's platform
# Please update `PROJECT_NAME` and `WORKSPACE` to the values associated with your account.
# %%
PROJECT_NAME = "flytekit-comet-ml-v1"
WORKSPACE = "thomas-unionai"

# %% [markdown]
# W&B requires an API key to authenticate with Comet. In the above example,
# the secret is created using
# [Flyte's Secrets manager](https://docs.flyte.org/en/latest/user_guide/productionizing/secrets.html).
# %%
secret = Secret(key="comet-ml-key", group="comet-ml-group")

# %% [markdown]
# Next, we use `ImageSpec` to construct a container that contains the dependencies for this
# task:
# %%

REGISTRY = os.getenv("REGISTRY", "localhost:30000")
image = ImageSpec(
name="comet-ml",
packages=[
"torch==2.3.1",
"comet-ml==3.43.2",
"lightning==2.3.0",
"flytekitplugins-comet-ml",
"torchvision",
],
builder="default",
registry=REGISTRY,
)


# %% [markdown]
# Here, we use a Flyte task to download the dataset and cache it:
# %%
@task(cache=True, cache_version="2", container_image=image)
def get_dataset() -> FlyteDirectory:
from torchvision.datasets import MNIST

ctx = current_context()
dataset_dir = os.path.join(ctx.working_directory, "datasetset")
os.makedirs(dataset_dir, exist_ok=True)

# Download training and evaluation dataset
MNIST(dataset_dir, train=True, download=True)
MNIST(dataset_dir, train=False, download=True)

return dataset_dir


# %%
# The `comet_ml_login` decorator calls `comet_ml.init` and configures it to use Flyte's
# execution id as the Comet's experiment key. The body of the task is PyTorch Lightning
# training code, where we pass `CometLogger` into the `Trainer`'s `logger`.
@task(
secret_requests=[secret],
container_image=image,
)
@comet_ml_login(
project_name=PROJECT_NAME,
workspace=WORKSPACE,
secret=secret,
)
def train_lightning(dataset: FlyteDirectory, hidden_layer_size: int):
import pytorch_lightning as pl
import torch
import torch.nn.functional as F
from pytorch_lightning import Trainer
from pytorch_lightning.loggers import CometLogger
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision.datasets import MNIST

class Model(pl.LightningModule):
def __init__(self, layer_size=784, hidden_layer_size=256):
super().__init__()
self.save_hyperparameters()
self.layers = torch.nn.Sequential(
torch.nn.Linear(layer_size, hidden_layer_size),
torch.nn.Linear(hidden_layer_size, 10),
)

def forward(self, x):
return torch.relu(self.layers(x.view(x.size(0), -1)))

def training_step(self, batch, batch_nb):
x, y = batch
loss = F.cross_entropy(self(x), y)
self.logger.log_metrics({"train_loss": loss}, step=batch_nb)
return loss

def validation_step(self, batch, batch_nb):
x, y = batch
y_hat = self.forward(x)
loss = F.cross_entropy(y_hat, y)
self.logger.log_metrics({"val_loss": loss}, step=batch_nb)
return loss

def configure_optimizers(self):
return torch.optim.Adam(self.parameters(), lr=0.02)

dataset.download()
train_ds = MNIST(dataset, train=True, download=False, transform=transforms.ToTensor())
eval_ds = MNIST(dataset, train=False, download=False, transform=transforms.ToTensor())
train_loader = DataLoader(train_ds, batch_size=32)
eval_loader = DataLoader(eval_ds, batch_size=32)

comet_logger = CometLogger()
comet_logger.log_hyperparams({"batch_size": 32})

model = Model(hidden_layer_size=hidden_layer_size)
trainer = Trainer(max_epochs=1, fast_dev_run=True, logger=comet_logger)
trainer.fit(model, train_loader, eval_loader)


@workflow
def main(hidden_layer_size: int = 32):
dataset = get_dataset()
train_lightning(dataset=dataset, hidden_layer_size=hidden_layer_size)


# %% [markdown]
# To enable dynamic log links, add plugin to Flyte's configuration file:
# ```yaml
# plugins:
# logs:
# dynamic-log-links:
# - comet-ml-execution-id:
# displayName: Comet
# templateUris: "{{ .taskConfig.host }}/{{ .taskConfig.workspace }}/{{ .taskConfig.project_name }}/{{ .executionName }}{{ .nodeId }}{{ .taskRetryAttempt }}{{ .taskConfig.link_suffix }}"
# - comet-ml-custom-id:
# displayName: Comet
# templateUris: "{{ .taskConfig.host }}/{{ .taskConfig.workspace }}/{{ .taskConfig.project_name }}/{{ .taskConfig.experiment_key }}"
# ```
1 change: 1 addition & 0 deletions examples/comet_ml_plugin/requirements.in
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
flytekitplugins-comet-ml
Loading