-
Notifications
You must be signed in to change notification settings - Fork 300
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
TypeTransformers for PyTorch Tensor, Module, and Checkpoint #1032
Changes from 18 commits
4974353
fa5e3ae
6d8f977
3560adf
bf61ef7
f4b8704
7b9218f
6332364
9f098ba
b8111a6
13fd0f7
7b299f4
4ef601c
c8d5478
b644a2e
88a6ce1
6915913
6ce6e19
a48472a
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -11,3 +11,4 @@ codespell | |
google-cloud-bigquery | ||
google-cloud-bigquery-storage | ||
IPython | ||
torch |
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -33,3 +33,4 @@ papermill # papermill | |
jupyter # papermill | ||
pyspark # spark | ||
sqlalchemy # sqlalchemy | ||
torch # pytorch |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,7 @@ | ||
############ | ||
PyTorch Type | ||
############ | ||
.. automodule:: flytekit.extras.pytorch | ||
:no-members: | ||
:no-inherited-members: | ||
:no-special-members: |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,20 @@ | ||
""" | ||
Flytekit PyTorch | ||
========================================= | ||
.. currentmodule:: flytekit.extras.pytorch | ||
|
||
.. autosummary:: | ||
:template: custom.rst | ||
:toctree: generated/ | ||
|
||
PyTorchCheckpoint | ||
""" | ||
from flytekit.loggers import logger | ||
|
||
try: | ||
from .checkpoint import PyTorchCheckpoint, PyTorchCheckpointTransformer | ||
from .native import PyTorchModuleTransformer, PyTorchTensorTransformer | ||
except ImportError: | ||
logger.info( | ||
"We won't register PyTorchCheckpointTransformer, PyTorchTensorTransformer, and PyTorchModuleTransformer because torch is not installed." | ||
) |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,141 @@ | ||
import pathlib | ||
import typing | ||
from dataclasses import asdict, dataclass, fields, is_dataclass | ||
from typing import Any, Callable, Dict, NamedTuple, Optional, Type, Union | ||
|
||
import torch | ||
from dataclasses_json import dataclass_json | ||
|
||
from flytekit.core.context_manager import FlyteContext | ||
from flytekit.core.type_engine import TypeEngine, TypeTransformer, TypeTransformerFailedError | ||
from flytekit.models.core import types as _core_types | ||
from flytekit.models.literals import Blob, BlobMetadata, Literal, Scalar | ||
from flytekit.models.types import LiteralType | ||
|
||
try: | ||
from typing import Protocol | ||
except ImportError: | ||
from typing_extensions import Protocol | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. we can always use typing_extensions right? There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Yep! I'll merge this now but will make sure to modify the import to use There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Modified the import — I had to resolve a merge conflict. |
||
|
||
|
||
class IsDataclass(Protocol): | ||
__dataclass_fields__: Dict | ||
__dataclass_params__: Dict | ||
__post_init__: Optional[Callable] | ||
eapolinario marked this conversation as resolved.
Show resolved
Hide resolved
|
||
|
||
|
||
@dataclass_json | ||
@dataclass | ||
class PyTorchCheckpoint: | ||
""" | ||
This class is helpful to save a checkpoint. | ||
""" | ||
|
||
module: Optional[torch.nn.Module] = None | ||
hyperparameters: Optional[Union[Dict[str, Any], NamedTuple, IsDataclass]] = None | ||
optimizer: Optional[torch.optim.Optimizer] = None | ||
|
||
def __post_init__(self): | ||
if not ( | ||
isinstance(self.hyperparameters, dict) | ||
or (is_dataclass(self.hyperparameters) and not isinstance(self.hyperparameters, type)) | ||
or (isinstance(self.hyperparameters, tuple) and hasattr(self.hyperparameters, "_fields")) | ||
or (self.hyperparameters is None) | ||
): | ||
raise TypeTransformerFailedError( | ||
f"hyperparameters must be a dict, dataclass, or NamedTuple. Got {type(self.hyperparameters)}" | ||
) | ||
|
||
if not (self.module or self.hyperparameters or self.optimizer): | ||
raise TypeTransformerFailedError("Must have at least one of module, hyperparameters, or optimizer") | ||
|
||
|
||
class PyTorchCheckpointTransformer(TypeTransformer[PyTorchCheckpoint]): | ||
""" | ||
TypeTransformer that supports serializing and deserializing checkpoint. | ||
""" | ||
|
||
PYTORCH_CHECKPOINT_FORMAT = "PyTorchCheckpoint" | ||
|
||
def __init__(self): | ||
super().__init__(name="PyTorch Checkpoint", t=PyTorchCheckpoint) | ||
|
||
def get_literal_type(self, t: Type[PyTorchCheckpoint]) -> LiteralType: | ||
return LiteralType( | ||
blob=_core_types.BlobType( | ||
format=self.PYTORCH_CHECKPOINT_FORMAT, dimensionality=_core_types.BlobType.BlobDimensionality.SINGLE | ||
) | ||
) | ||
|
||
def to_literal( | ||
self, | ||
ctx: FlyteContext, | ||
python_val: PyTorchCheckpoint, | ||
python_type: Type[PyTorchCheckpoint], | ||
expected: LiteralType, | ||
) -> Literal: | ||
meta = BlobMetadata( | ||
type=_core_types.BlobType( | ||
format=self.PYTORCH_CHECKPOINT_FORMAT, dimensionality=_core_types.BlobType.BlobDimensionality.SINGLE | ||
) | ||
) | ||
|
||
local_path = ctx.file_access.get_random_local_path() + ".pt" | ||
pathlib.Path(local_path).parent.mkdir(parents=True, exist_ok=True) | ||
|
||
to_save = {} | ||
for field in fields(python_val): | ||
value = getattr(python_val, field.name) | ||
|
||
if value and field.name in ["module", "optimizer"]: | ||
to_save[field.name + "_state_dict"] = getattr(value, "state_dict")() | ||
elif value and field.name == "hyperparameters": | ||
if isinstance(value, dict): | ||
to_save.update(value) | ||
elif isinstance(value, tuple): | ||
to_save.update(value._asdict()) | ||
elif is_dataclass(value): | ||
to_save.update(asdict(value)) | ||
|
||
if not to_save: | ||
raise TypeTransformerFailedError(f"Cannot save empty {python_val}") | ||
|
||
# save checkpoint to a file | ||
torch.save(to_save, local_path) | ||
|
||
remote_path = ctx.file_access.get_random_remote_path(local_path) | ||
ctx.file_access.put_data(local_path, remote_path, is_multipart=False) | ||
return Literal(scalar=Scalar(blob=Blob(metadata=meta, uri=remote_path))) | ||
|
||
def to_python_value( | ||
self, ctx: FlyteContext, lv: Literal, expected_python_type: Type[PyTorchCheckpoint] | ||
) -> PyTorchCheckpoint: | ||
try: | ||
uri = lv.scalar.blob.uri | ||
except AttributeError: | ||
TypeTransformerFailedError(f"Cannot convert from {lv} to {expected_python_type}") | ||
|
||
local_path = ctx.file_access.get_random_local_path() | ||
ctx.file_access.get_data(uri, local_path, is_multipart=False) | ||
|
||
# cpu <-> gpu conversion | ||
if torch.cuda.is_available(): | ||
map_location = "cuda:0" | ||
else: | ||
map_location = torch.device("cpu") | ||
|
||
# load checkpoint from a file | ||
return typing.cast(PyTorchCheckpoint, torch.load(local_path, map_location=map_location)) | ||
|
||
def guess_python_type(self, literal_type: LiteralType) -> Type[PyTorchCheckpoint]: | ||
if ( | ||
literal_type.blob is not None | ||
and literal_type.blob.dimensionality == _core_types.BlobType.BlobDimensionality.SINGLE | ||
and literal_type.blob.format == self.PYTORCH_CHECKPOINT_FORMAT | ||
): | ||
return PyTorchCheckpoint | ||
|
||
raise ValueError(f"Transformer {self} cannot reverse {literal_type}") | ||
|
||
|
||
TypeEngine.register(PyTorchCheckpointTransformer()) |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,92 @@ | ||
import pathlib | ||
from typing import Generic, Type, TypeVar | ||
|
||
import torch | ||
|
||
from flytekit.core.context_manager import FlyteContext | ||
from flytekit.core.type_engine import TypeEngine, TypeTransformer, TypeTransformerFailedError | ||
from flytekit.models.core import types as _core_types | ||
from flytekit.models.literals import Blob, BlobMetadata, Literal, Scalar | ||
from flytekit.models.types import LiteralType | ||
|
||
T = TypeVar("T") | ||
|
||
|
||
class PyTorchTypeTransformer(TypeTransformer, Generic[T]): | ||
def get_literal_type(self, t: Type[T]) -> LiteralType: | ||
return LiteralType( | ||
blob=_core_types.BlobType( | ||
format=self.PYTORCH_FORMAT, | ||
dimensionality=_core_types.BlobType.BlobDimensionality.SINGLE, | ||
) | ||
) | ||
|
||
def to_literal( | ||
self, | ||
ctx: FlyteContext, | ||
python_val: T, | ||
python_type: Type[T], | ||
expected: LiteralType, | ||
) -> Literal: | ||
meta = BlobMetadata( | ||
type=_core_types.BlobType( | ||
format=self.PYTORCH_FORMAT, | ||
dimensionality=_core_types.BlobType.BlobDimensionality.SINGLE, | ||
) | ||
) | ||
|
||
local_path = ctx.file_access.get_random_local_path() + ".pt" | ||
pathlib.Path(local_path).parent.mkdir(parents=True, exist_ok=True) | ||
|
||
# save pytorch tensor/module to a file | ||
torch.save(python_val, local_path) | ||
|
||
remote_path = ctx.file_access.get_random_remote_path(local_path) | ||
ctx.file_access.put_data(local_path, remote_path, is_multipart=False) | ||
return Literal(scalar=Scalar(blob=Blob(metadata=meta, uri=remote_path))) | ||
|
||
def to_python_value(self, ctx: FlyteContext, lv: Literal, expected_python_type: Type[T]) -> T: | ||
try: | ||
uri = lv.scalar.blob.uri | ||
except AttributeError: | ||
TypeTransformerFailedError(f"Cannot convert from {lv} to {expected_python_type}") | ||
|
||
local_path = ctx.file_access.get_random_local_path() | ||
ctx.file_access.get_data(uri, local_path, is_multipart=False) | ||
|
||
# cpu <-> gpu conversion | ||
if torch.cuda.is_available(): | ||
map_location = "cuda:0" | ||
else: | ||
map_location = torch.device("cpu") | ||
|
||
# load pytorch tensor/module from a file | ||
return torch.load(local_path, map_location=map_location) | ||
|
||
def guess_python_type(self, literal_type: LiteralType) -> Type[T]: | ||
if ( | ||
literal_type.blob is not None | ||
and literal_type.blob.dimensionality == _core_types.BlobType.BlobDimensionality.SINGLE | ||
and literal_type.blob.format == self.PYTORCH_FORMAT | ||
): | ||
return T | ||
|
||
raise ValueError(f"Transformer {self} cannot reverse {literal_type}") | ||
|
||
|
||
class PyTorchTensorTransformer(PyTorchTypeTransformer[torch.Tensor]): | ||
PYTORCH_FORMAT = "PyTorchTensor" | ||
|
||
def __init__(self): | ||
super().__init__(name="PyTorch Tensor", t=torch.Tensor) | ||
|
||
|
||
class PyTorchModuleTransformer(PyTorchTypeTransformer[torch.nn.Module]): | ||
PYTORCH_FORMAT = "PyTorchModule" | ||
|
||
def __init__(self): | ||
super().__init__(name="PyTorch Module", t=torch.nn.Module) | ||
|
||
|
||
TypeEngine.register(PyTorchTensorTransformer()) | ||
TypeEngine.register(PyTorchModuleTransformer()) |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,13 +1 @@ | ||
""" | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. is removing this from docs intentional? There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Yeah. I don't think we'd want to have Transformer in the API reference cause the methods within the TypeTransformer class remain the same. |
||
Flytekit Numpy | ||
============== | ||
.. currentmodule:: flytekit.types.numpy | ||
|
||
.. autosummary:: | ||
:template: custom.rst | ||
:toctree: generated/ | ||
|
||
NumpyArrayTransformer | ||
""" | ||
|
||
from .ndarray import NumpyArrayTransformer |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
we should stick with the full import in the future, just for consistency. merge as is, i'll update it in the future.