Skip to content

Commit

Permalink
Make CUDNN an alias of MIOPEN for HIP ops (pytorch#12278)
Browse files Browse the repository at this point in the history
Summary:
This is mostly for reusing all the cudnn test cases in our python operator_tests.
Pull Request resolved: pytorch#12278

Differential Revision: D10842592

Pulled By: bddppq

fbshipit-source-id: 4b3ed91fca64ff02060837b3270393bc2f9a9898
  • Loading branch information
bddppq authored and facebook-github-bot committed Oct 25, 2018
1 parent e1243ce commit ccfaf46
Show file tree
Hide file tree
Showing 7 changed files with 86 additions and 32 deletions.
3 changes: 2 additions & 1 deletion caffe2/core/operator.h
Original file line number Diff line number Diff line change
Expand Up @@ -915,7 +915,8 @@ C10_DECLARE_REGISTRY(
C10_REGISTER_CLASS(HIPOperatorRegistry, name##_ENGINE_##engine, __VA_ARGS__)

#define REGISTER_MIOPEN_OPERATOR(name, ...) \
REGISTER_HIP_OPERATOR_WITH_ENGINE(name, MIOPEN, __VA_ARGS__)
REGISTER_HIP_OPERATOR_WITH_ENGINE(name, MIOPEN, __VA_ARGS__) \
REGISTER_HIP_OPERATOR_WITH_ENGINE(name, CUDNN, __VA_ARGS__) // Make CUDNN an alias of MIOPEN for HIP ops

// StaticLinkingProtector is a helper class that ensures that the Caffe2
// library is linked correctly with whole archives (in the case of static
Expand Down
11 changes: 9 additions & 2 deletions caffe2/operators/hip/spatial_batch_norm_op_miopen.cc
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,7 @@
#include "caffe2/core/hip/context_hip.h"
#include "caffe2/core/hip/miopen_wrapper.h"
#include "caffe2/operators/spatial_batch_norm_op.h"
#include "caffe2/operators/hip/spatial_batch_norm_op_hip_impl.cuh"
#include "caffe2/utils/math.h"

const double MIOPEN_BN_MIN_EPSILON = 1e-6;
Expand All @@ -33,8 +34,6 @@ class MIOpenSpatialBNOp final : public SpatialBNOp<HIPContext> {
alpha_(OperatorBase::GetSingleArgument<float>("alpha", 1.0)),
beta_(OperatorBase::GetSingleArgument<float>("beta", 0.0)),
mode_(miopenBNSpatial) {
CAFFE_ENFORCE_EQ(
order_, StorageOrder::NCHW, "Only NCHW order is supported right now.");
MIOPEN_ENFORCE(miopenCreateTensorDescriptor(&data_desc_));
MIOPEN_ENFORCE(miopenCreateTensorDescriptor(&bn_param_desc_));
if (epsilon_ <= MIOPEN_BN_MIN_EPSILON) {
Expand Down Expand Up @@ -247,6 +246,10 @@ bool MIOpenSpatialBNOp::DoRunWithType() {
return true;
}
bool MIOpenSpatialBNOp::RunOnDevice() {
// Fall back to HIP for multi batch spatial BNorm and NHWC layout
if (num_batches_ > 1 || order_ == StorageOrder::NHWC) {
return SpatialBNOp<HIPContext>::RunOnDevice();
}
if (Input(0).IsType<float>()) {
return DoRunWithType<float, float>();
} else {
Expand Down Expand Up @@ -327,6 +330,10 @@ bool MIOpenSpatialBNGradientOp::DoRunWithType() {
return true;
}
bool MIOpenSpatialBNGradientOp::RunOnDevice() {
// Fall back to HIP for multi batch spatial BNorm and NHWC layout
if (num_batches_ > 1 || order_ == StorageOrder::NHWC) {
return SpatialBNGradientOp<HIPContext>::RunOnDevice();
}
if (Input(0).IsType<float>()) {
return DoRunWithType<float, float>();
} else {
Expand Down
18 changes: 18 additions & 0 deletions caffe2/python/hip_test_util.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,18 @@
## @package hip_test_util
# Module caffe2.python.hip_test_util
"""
The HIP test utils is a small addition on top of the hypothesis test utils
under caffe2/python, which allows one to more easily test HIP/ROCm related
operators.
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

from caffe2.proto import caffe2_pb2

def run_in_hip(gc, dc):
return (gc.device_type == caffe2_pb2.HIP) or (
caffe2_pb2.HIP in {d.device_type for d in dc})
23 changes: 16 additions & 7 deletions caffe2/python/operator_test/conv_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,7 @@

from caffe2.proto import caffe2_pb2
from caffe2.python import brew, core, workspace
import caffe2.python.hip_test_util as hiputl
import caffe2.python.hypothesis_test_util as hu
from caffe2.python.model_helper import ModelHelper
import caffe2.python.serialized_test.serialized_test_util as serial
Expand All @@ -19,7 +20,6 @@
import unittest
import os


def _cudnn_supports(
dilation=False,
nhwc=False,
Expand Down Expand Up @@ -213,9 +213,12 @@ def test_convolution_gradients(
dkernel = dilation * (kernel - 1) + 1

if engine == 'CUDNN':
assume(_cudnn_supports(dilation=(dilation > 1),
nhwc=(order == 'NHWC'),
backward=True))
if hiputl.run_in_hip(gc, dc):
assume((order == "NCHW") and not (dilation > 1 and group > 1))
else:
assume(_cudnn_supports(dilation=(dilation > 1),
nhwc=(order == 'NHWC'),
backward=True))

assume(engine != "MKLDNN" or use_bias is True)

Expand Down Expand Up @@ -373,7 +376,7 @@ def test_3d_convolution_nchw(self, input_channels, output_channels,
force_algo_fwd=_cudnn_convolution_algo_count("fwd"),
force_algo_dgrad=_cudnn_convolution_algo_count("dgrad"),
force_algo_wgrad=_cudnn_convolution_algo_count("wgrad"),
**hu.gcs)
**hu.gcs_no_hip) # MIOPEN doesn't support 3D conv yet
def test_3d_convolution_cudnn_nchw(self, op_type, batch_size, stride, size,
kernel, dilation, pad, use_bias,
force_algo_fwd, force_algo_dgrad,
Expand Down Expand Up @@ -461,8 +464,12 @@ def test_convolution_layout(self, op_type, stride, pad, kernel, dilation,

for order in ["NCHW", "NHWC"]:
engine_list = ['']
if _cudnn_supports(dilation=(dilation > 1), nhwc=(order == 'NHWC')):
engine_list.append('CUDNN')
if hiputl.run_in_hip(gc, dc):
if order == 'NCHW':
engine_list.append('MIOPEN')
else:
if _cudnn_supports(dilation=(dilation > 1), nhwc=(order == 'NHWC')):
engine_list.append('CUDNN')

for engine in engine_list:
op = core.CreateOperator(
Expand Down Expand Up @@ -649,6 +656,8 @@ def test_use_cudnn_engine_interactions(self):
def test_1x1_conv(self, op_type, N, G, DX, DY, H, W, use_bias, order,
force_algo_fwd, force_algo_dgrad,
force_algo_wgrad, gc, dc):
if hiputl.run_in_hip(gc, dc):
assume(order == "NCHW")
if order == "NHWC":
G = 1

Expand Down
11 changes: 8 additions & 3 deletions caffe2/python/operator_test/group_conv_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,12 +8,12 @@

from caffe2.proto import caffe2_pb2
from caffe2.python import core
import caffe2.python.hip_test_util as hiputl
import caffe2.python.hypothesis_test_util as hu

import unittest
import os


class TestGroupConvolution(hu.HypothesisTestCase):

@given(stride=st.integers(1, 3),
Expand All @@ -36,8 +36,13 @@ def test_group_convolution(
input_channels_per_group, output_channels_per_group, batch_size,
order, engine, use_bias, gc, dc):
assume(size >= kernel)
# TODO: Group conv in NHWC not implemented for GPU yet.
assume(group == 1 or order == "NCHW" or gc.device_type != caffe2_pb2.CUDA)

if hiputl.run_in_hip(gc, dc):
if order == "NHWC":
assume(group == 1 and engine != "CUDNN")
else:
# TODO: Group conv in NHWC not implemented for GPU yet.
assume(group == 1 or order == "NCHW" or gc.device_type != caffe2_pb2.CUDA)
input_channels = input_channels_per_group * group
output_channels = output_channels_per_group * group

Expand Down
14 changes: 13 additions & 1 deletion caffe2/python/operator_test/pooling_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,9 +9,9 @@
import unittest

from caffe2.python import core, workspace
import caffe2.python.hip_test_util as hiputl
import caffe2.python.hypothesis_test_util as hu


class TestPooling(hu.HypothesisTestCase):
# CUDNN does NOT support different padding values and we skip it
@given(stride_h=st.integers(1, 3),
Expand Down Expand Up @@ -126,6 +126,9 @@ def test_pooling_3d(self, stride, pad, kernel, size, input_channels,
batch_size, order, op_type, engine, gc, dc):
assume(pad < kernel)
assume(size + pad + pad >= kernel)
# Currently MIOpen Pooling only supports 2d pooling
if hiputl.run_in_hip(gc, dc):
assume(engine != "CUDNN")
# some case here could be calculated with global pooling, but instead
# calculated with general implementation, slower but should still
# be corect.
Expand Down Expand Up @@ -159,6 +162,9 @@ def test_pooling_3d(self, stride, pad, kernel, size, input_channels,
**hu.gcs)
def test_global_pooling_3d(self, kernel, size, input_channels,
batch_size, order, op_type, engine, gc, dc):
# Currently MIOpen Pooling only supports 2d pooling
if hiputl.run_in_hip(gc, dc):
assume(engine != "CUDNN")
# pad and stride ignored because they will be infered in global_pooling
op = core.CreateOperator(
op_type,
Expand Down Expand Up @@ -276,6 +282,9 @@ def test_pooling(self, stride, pad, kernel, size,
input_channels, batch_size,
order, op_type, engine, gc, dc):
assume(pad < kernel)
if hiputl.run_in_hip(gc, dc) and engine == "CUDNN":
assume(order == "NCHW" and op_type != "LpPool")

op = core.CreateOperator(
op_type,
["X"],
Expand Down Expand Up @@ -306,6 +315,9 @@ def test_global_pooling(self, size, input_channels, batch_size,
order, op_type, engine, gc, dc):
# CuDNN 5 does not support deterministic max pooling.
assume(workspace.GetCuDNNVersion() >= 6000 or op_type != "MaxPool")

if hiputl.run_in_hip(gc, dc) and engine == "CUDNN":
assume(order == "NCHW" and op_type != "LpPool")
op = core.CreateOperator(
op_type,
["X"],
Expand Down
38 changes: 20 additions & 18 deletions caffe2/python/operator_test/spatial_bn_op_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,21 +5,17 @@

from caffe2.proto import caffe2_pb2
from caffe2.python import brew, core, workspace
import caffe2.python.hip_test_util as hiputl
import caffe2.python.hypothesis_test_util as hu
from caffe2.python.model_helper import ModelHelper
import caffe2.python.serialized_test.serialized_test_util as serial

from hypothesis import given
from hypothesis import given, assume
import hypothesis.strategies as st
import numpy as np
import unittest


def _run_in_hip(gc, dc):
return (gc.device_type == caffe2_pb2.HIP) or (
caffe2_pb2.HIP in {d.device_type for d in dc})


class TestSpatialBN(serial.SerializedTestCase):

@serial.given(size=st.integers(7, 10),
Expand All @@ -30,11 +26,13 @@ class TestSpatialBN(serial.SerializedTestCase):
epsilon=st.floats(min_value=1e-5, max_value=1e-2),
inplace=st.booleans(),
engine=st.sampled_from(["", "CUDNN"]),
# Currently HIP SpatialBN only supports 2D
**hu.gcs_no_hip)
**hu.gcs)
def test_spatialbn_test_mode_3d(
self, size, input_channels, batch_size, seed, order, epsilon,
inplace, engine, gc, dc):
# Currently MIOPEN SpatialBN only supports 2D
if hiputl.run_in_hip(gc, dc):
assume(engine != "CUDNN")
op = core.CreateOperator(
"SpatialBN",
["X", "scale", "bias", "mean", "var"],
Expand Down Expand Up @@ -79,11 +77,13 @@ def reference_spatialbn_test(X, scale, bias, mean, var):
epsilon=st.floats(min_value=1e-5, max_value=1e-2),
inplace=st.booleans(),
engine=st.sampled_from(["", "CUDNN"]),
# Currently HIP SpatialBN only supports 2D
**hu.gcs_no_hip)
**hu.gcs)
def test_spatialbn_test_mode_1d(
self, size, input_channels, batch_size, seed, order, epsilon,
inplace, engine, gc, dc):
# Currently MIOPEN SpatialBN only supports 2D
if hiputl.run_in_hip(gc, dc):
assume(engine != "CUDNN")
op = core.CreateOperator(
"SpatialBN",
["X", "scale", "bias", "mean", "var"],
Expand Down Expand Up @@ -129,8 +129,8 @@ def test_spatialbn_test_mode(
self, size, input_channels, batch_size, seed, order, epsilon,
inplace, engine, gc, dc):
# Currently HIP SpatialBN only supports NCHW
if _run_in_hip(gc, dc) and (order != 'NCHW'):
return
if hiputl.run_in_hip(gc, dc):
assume(order == "NCHW")

op = core.CreateOperator(
"SpatialBN",
Expand Down Expand Up @@ -179,8 +179,8 @@ def test_spatialbn_train_mode(
self, size, input_channels, batch_size, seed, order, epsilon,
momentum, inplace, engine, gc, dc):
# Currently HIP SpatialBN only supports NCHW
if _run_in_hip(gc, dc) and (order != 'NCHW'):
return
if hiputl.run_in_hip(gc, dc):
assume(order == "NCHW")

op = core.CreateOperator(
"SpatialBN",
Expand Down Expand Up @@ -220,8 +220,8 @@ def test_spatialbn_train_mode_gradient_check(
self, size, input_channels, batch_size, seed, order, epsilon,
momentum, engine, gc, dc):
# Currently HIP SpatialBN only supports NCHW
if _run_in_hip(gc, dc) and (order != 'NCHW'):
return
if hiputl.run_in_hip(gc, dc):
assume(order == "NCHW")

op = core.CreateOperator(
"SpatialBN",
Expand Down Expand Up @@ -255,11 +255,13 @@ def test_spatialbn_train_mode_gradient_check(
epsilon=st.floats(min_value=1e-5, max_value=1e-2),
momentum=st.floats(min_value=0.5, max_value=0.9),
engine=st.sampled_from(["", "CUDNN"]),
# Currently HIP SpatialBN only supports 2D
**hu.gcs_no_hip)
**hu.gcs)
def test_spatialbn_train_mode_gradient_check_1d(
self, size, input_channels, batch_size, seed, order, epsilon,
momentum, engine, gc, dc):
# Currently MIOPEN SpatialBN only supports 2D
if hiputl.run_in_hip(gc, dc):
assume(engine != "CUDNN")
op = core.CreateOperator(
"SpatialBN",
["X", "scale", "bias", "mean", "var"],
Expand Down

0 comments on commit ccfaf46

Please sign in to comment.