forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Debug/Analysis tools for Jobs/ExecutionSteps
Summary: Introduces 2 utitilies: - ##print_obj##: Prints the whole Job in a nice way -- each op call takes one single line and nets are inlined for much better readability. Loops and parallel steps are easy to read. - ##analyse_obj##: Goes through a Job and checks 2 things: - that there will be no undefined blob errors at execution. - no blob of same name will be created by parallel execution steps Reviewed By: dzhulgakov Differential Revision: D4142381 fbshipit-source-id: 61bf3398c22e9947493e99145ce2bfc2646830a6
- Loading branch information
1 parent
280718b
commit 17151ca
Showing
2 changed files
with
378 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,289 @@ | ||
from __future__ import absolute_import | ||
from __future__ import division | ||
from __future__ import print_function | ||
from __future__ import unicode_literals | ||
|
||
from caffe2.proto.caffe2_pb2 import OperatorDef | ||
from caffe2.python.checkpoint import Job | ||
from caffe2.python.core import Net, ExecutionStep, Plan | ||
from caffe2.python.task import Task, TaskGroup, WorkspaceType | ||
from collections import defaultdict | ||
from contextlib import contextmanager | ||
from copy import copy | ||
|
||
|
||
class Visitor(object): | ||
@classmethod | ||
def register(cls, Type): | ||
if not(hasattr(cls, 'visitors')): | ||
cls.visitors = [] | ||
|
||
def _register(func): | ||
cls.visitors.append((Type, func)) | ||
return func | ||
|
||
return _register | ||
|
||
def __call__(self, obj, *args, **kwargs): | ||
if obj is None: | ||
return | ||
for Type, func in self.__class__.visitors: | ||
if isinstance(obj, Type): | ||
return func(self, obj, *args, **kwargs) | ||
raise TypeError('%s: unsupported object type: %s' % ( | ||
self.__class__.__name__, type(obj))) | ||
|
||
|
||
class Analyzer(Visitor): | ||
PREFIXES_TO_IGNORE = {'distributed_ctx_init'} | ||
|
||
def __init__(self): | ||
self.workspaces = defaultdict(lambda: defaultdict(lambda: 0)) | ||
self.workspace_ctx = [] | ||
|
||
@property | ||
def workspace(self): | ||
return self.workspace_ctx[-1] | ||
|
||
@contextmanager | ||
def set_workspace(self, node=None, ws=None, do_copy=False): | ||
if ws is not None: | ||
ws = ws | ||
elif node is not None: | ||
ws = self.workspaces[str(node)] | ||
else: | ||
ws = self.workspace | ||
if do_copy: | ||
ws = copy(ws) | ||
self.workspace_ctx.append(ws) | ||
yield ws | ||
del self.workspace_ctx[-1] | ||
|
||
def define_blob(self, blob): | ||
self.workspace[blob] += 1 | ||
|
||
def need_blob(self, blob): | ||
if any(blob.startswith(p) for p in Analyzer.PREFIXES_TO_IGNORE): | ||
return | ||
assert blob in self.workspace, 'Blob undefined: %s' % blob | ||
|
||
|
||
@Analyzer.register(OperatorDef) | ||
def analyze_op(analyzer, op): | ||
map(analyzer.need_blob, op.input) | ||
map(analyzer.define_blob, op.output) | ||
|
||
|
||
@Analyzer.register(Net) | ||
def analyze_net(analyzer, net): | ||
map(analyzer, net.Proto().op) | ||
|
||
|
||
@Analyzer.register(ExecutionStep) | ||
def analyze_step(analyzer, step): | ||
proto = step.Proto() | ||
if proto.report_net: | ||
with analyzer.set_workspace(do_copy=True): | ||
analyzer(step.get_net(proto.report_net)) | ||
all_new_blobs = set() | ||
substeps = step.Substeps() + [step.get_net(n) for n in proto.network] | ||
for substep in substeps: | ||
with analyzer.set_workspace(do_copy=proto.concurrent_substeps) as ws_in: | ||
analyzer(substep) | ||
if proto.should_stop_blob: | ||
analyzer.need_blob(proto.should_stop_blob) | ||
if proto.concurrent_substeps: | ||
new_blobs = set(ws_in.keys()) - set(analyzer.workspace.keys()) | ||
assert len(all_new_blobs & new_blobs) == 0, ( | ||
'Error: Blobs created by multiple parallel steps: %s' % ( | ||
', '.join(all_new_blobs & new_blobs))) | ||
all_new_blobs |= new_blobs | ||
map(analyzer.define_blob, all_new_blobs) | ||
|
||
|
||
@Analyzer.register(Task) | ||
def analyze_task(analyzer, task): | ||
# check that our plan protobuf is not too large (limit of 64Mb) | ||
step = task.get_step() | ||
plan = Plan(task.node) | ||
plan.AddStep(step) | ||
proto_len = len(plan.Proto().SerializeToString()) | ||
assert proto_len < 2 ** 26, ( | ||
'Due to a protobuf limitation, serialized tasks must be smaller ' | ||
'than 64Mb, but this task has {} bytes.' % proto_len) | ||
|
||
is_private = task.workspace_type() != WorkspaceType.GLOBAL | ||
with analyzer.set_workspace(do_copy=is_private): | ||
analyzer(step) | ||
|
||
|
||
@Analyzer.register(TaskGroup) | ||
def analyze_task_group(analyzer, tg): | ||
for task in tg.tasks_by_node().tasks(): | ||
with analyzer.set_workspace(node=task.node): | ||
analyzer(task) | ||
|
||
|
||
@Analyzer.register(Job) | ||
def analyze_job(analyzer, job): | ||
analyzer(job.init_group) | ||
analyzer(job.epoch_group) | ||
|
||
|
||
def analyze(obj): | ||
""" | ||
Given a Job, visits all the execution steps making sure that: | ||
- no undefined blobs will be found during excution | ||
- no blob with same name is defined in concurrent steps | ||
""" | ||
Analyzer()(obj) | ||
|
||
|
||
class Text(object): | ||
def __init__(self): | ||
self._indent = 0 | ||
self._lines_in_context = [0] | ||
self.lines = [] | ||
|
||
@contextmanager | ||
def context(self, text): | ||
if text is not None: | ||
self.add('with %s:' % text) | ||
self._indent += 4 | ||
self._lines_in_context.append(0) | ||
yield | ||
if text is not None: | ||
self._indent -= 4 | ||
if self._lines_in_context[-1] == 0: | ||
self.add('pass') | ||
del self._lines_in_context[-1] | ||
|
||
def add(self, text): | ||
self._lines_in_context[-1] += 1 | ||
self.lines.append((' ' * self._indent) + text) | ||
|
||
def __str__(self): | ||
return '\n'.join(self.lines) | ||
|
||
|
||
class Printer(Visitor, Text): | ||
pass | ||
|
||
|
||
def _sanitize_str(s): | ||
s = str(s) | ||
return s if len(s) < 64 else (s[:64] + '...<+len=%d>' % (len(s) - 64)) | ||
|
||
|
||
def _arg_val(arg): | ||
if arg.HasField('f'): | ||
return str(arg.f) | ||
if arg.HasField('i'): | ||
return str(arg.i) | ||
if arg.HasField('s'): | ||
return _sanitize_str(arg.s) | ||
if arg.floats: | ||
return str(list(arg.floats)) | ||
if arg.ints: | ||
return str(list(arg.ints)) | ||
if arg.strings: | ||
return str([_sanitize_str(s) for s in arg.strings]) | ||
return '[]' | ||
|
||
|
||
def call(op, inputs=None, outputs=None): | ||
inputs = '' if not inputs else ', '.join( | ||
'%s=%s' % (str(a[0]), str(a[1])) if isinstance(a, tuple) else str(a) | ||
for a in inputs) | ||
call = '%s(%s)' % (op, inputs) | ||
return call if not outputs else '%s = %s' % (', '.join(outputs), call) | ||
|
||
|
||
@Printer.register(OperatorDef) | ||
def print_op(text, op): | ||
text.add(call( | ||
op.type, | ||
list(op.input) + [(a.name, _arg_val(a)) for a in op.arg], | ||
op.output)) | ||
|
||
|
||
@Printer.register(Net) | ||
def print_net(text, net): | ||
text.add('# net: %s' % str(net)) | ||
for op in net.Proto().op: | ||
text(op) | ||
|
||
|
||
def _get_step_context(step): | ||
proto = step.Proto() | ||
if proto.should_stop_blob: | ||
return call('loop'), None | ||
if proto.num_iter and proto.num_iter != 1: | ||
return call('loop', [proto.num_iter]), None | ||
concurrent = proto.concurrent_substeps and len(step.Substeps()) > 1 | ||
if concurrent: | ||
return call('parallel'), call('step') | ||
if proto.report_net: | ||
return call('run_once'), None | ||
return None, None | ||
|
||
|
||
@Printer.register(ExecutionStep) | ||
def print_step(text, step): | ||
proto = step.Proto() | ||
step_ctx, substep_ctx = _get_step_context(step) | ||
with text.context(step_ctx): | ||
if proto.report_net: | ||
with text.context(call('report_net', [proto.report_interval])): | ||
text(step.get_net(proto.report_net)) | ||
substeps = step.Substeps() + [step.get_net(n) for n in proto.network] | ||
for substep in substeps: | ||
with text.context(substep_ctx): | ||
text(substep) | ||
if proto.should_stop_blob: | ||
text.add(call('yield stop_if', [proto.should_stop_blob])) | ||
|
||
|
||
@Printer.register(Task) | ||
def print_task(text, task): | ||
with text.context(call('Task', [('node', task.node)])): | ||
text(task.get_step()) | ||
|
||
|
||
@Printer.register(TaskGroup) | ||
def print_task_group(text, tg, header=None): | ||
with text.context(header or call('TaskGroup')): | ||
for task in tg.tasks_by_node().tasks(): | ||
text(task) | ||
|
||
|
||
@Printer.register(Job) | ||
def print_job(text, job): | ||
text(job.init_group, 'Job.current().init_group') | ||
text(job.epoch_group, 'Job.current().epoch_group') | ||
|
||
|
||
def to_string(obj): | ||
""" | ||
Given a Net, ExecutionStep, Task, TaskGroup or Job, produces a string | ||
with detailed description of the execution steps. | ||
""" | ||
printer = Printer() | ||
printer(obj) | ||
return str(printer) | ||
|
||
|
||
def debug_net(net): | ||
""" | ||
Given a Net, produce another net that logs info about the operator call | ||
before each operator execution. Use for debugging purposes. | ||
""" | ||
assert isinstance(net, Net) | ||
debug_net = Net(str(net)) | ||
assert isinstance(net, Net) | ||
for op in net.Proto().op: | ||
text = Text() | ||
print_op(op, text) | ||
debug_net.LogInfo(str(text)) | ||
debug_net.Proto().op.extend([op]) | ||
return debug_net |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,89 @@ | ||
from __future__ import absolute_import | ||
from __future__ import division | ||
from __future__ import print_function | ||
from __future__ import unicode_literals | ||
|
||
from caffe2.python import net_printer | ||
from caffe2.python.checkpoint import Job | ||
from caffe2.python.net_builder import ops | ||
from caffe2.python.task import Task, final_output | ||
import unittest | ||
|
||
|
||
def example_loop(): | ||
with Task(): | ||
total = ops.Const(0) | ||
total_large = ops.Const(0) | ||
total_small = ops.Const(0) | ||
total_tiny = ops.Const(0) | ||
with ops.loop(10) as loop: | ||
outer = ops.Mul([loop.iter(), ops.Const(10)]) | ||
with ops.loop(loop.iter()) as inner: | ||
val = ops.Add([outer, inner.iter()]) | ||
with ops.If(ops.GE([val, ops.Const(80)])) as c: | ||
ops.Add([total_large, val], [total_large]) | ||
with c.Elif(ops.GE([val, ops.Const(50)])) as c: | ||
ops.Add([total_small, val], [total_small]) | ||
with c.Else(): | ||
ops.Add([total_tiny, val], [total_tiny]) | ||
ops.Add([total, val], total) | ||
|
||
|
||
def example_task(): | ||
with Task(): | ||
with ops.task_init(): | ||
one = ops.Const(1) | ||
two = ops.Add([one, one]) | ||
with ops.task_init(): | ||
three = ops.Const(3) | ||
accum = ops.Add([two, three]) | ||
# here, accum should be 5 | ||
with ops.task_exit(): | ||
# here, accum should be 6, since this executes after lines below | ||
seven_1 = ops.Add([accum, one]) | ||
six = ops.Add([accum, one]) | ||
ops.Add([accum, one], [accum]) | ||
seven_2 = ops.Add([accum, one]) | ||
o6 = final_output(six) | ||
o7_1 = final_output(seven_1) | ||
o7_2 = final_output(seven_2) | ||
return o6, o7_1, o7_2 | ||
|
||
|
||
def example_job(): | ||
with Job() as job: | ||
with job.init_group: | ||
example_loop() | ||
example_task() | ||
return job | ||
|
||
|
||
class TestNetPrinter(unittest.TestCase): | ||
def test_print(self): | ||
self.assertTrue(len(net_printer.to_string(example_job())) > 0) | ||
|
||
def test_valid_job(self): | ||
job = example_job() | ||
with job: | ||
with Task(): | ||
# distributed_ctx_init_* ignored by analyzer | ||
ops.Add(['distributed_ctx_init_a', 'distributed_ctx_init_b']) | ||
net_printer.analyze(example_job()) | ||
|
||
def test_undefined_blob(self): | ||
job = example_job() | ||
with job: | ||
with Task(): | ||
ops.Add(['a', 'b']) | ||
with self.assertRaises(AssertionError): | ||
net_printer.analyze(job) | ||
|
||
def test_multiple_definition(self): | ||
job = example_job() | ||
with job: | ||
with Task(): | ||
ops.Add([ops.Const(0), ops.Const(1)], 'out1') | ||
with Task(): | ||
ops.Add([ops.Const(2), ops.Const(3)], 'out1') | ||
with self.assertRaises(AssertionError): | ||
net_printer.analyze(job) |