Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Impeller] Use Wang's formula for quad/cubic subdivision. #52079

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 4 additions & 0 deletions ci/licenses_golden/licenses_flutter
Original file line number Diff line number Diff line change
Expand Up @@ -40113,6 +40113,8 @@ ORIGIN: ../../../flutter/impeller/geometry/type_traits.cc + ../../../flutter/LIC
ORIGIN: ../../../flutter/impeller/geometry/type_traits.h + ../../../flutter/LICENSE
ORIGIN: ../../../flutter/impeller/geometry/vector.cc + ../../../flutter/LICENSE
ORIGIN: ../../../flutter/impeller/geometry/vector.h + ../../../flutter/LICENSE
ORIGIN: ../../../flutter/impeller/geometry/wangs_formula.cc + ../../../flutter/LICENSE
ORIGIN: ../../../flutter/impeller/geometry/wangs_formula.h + ../../../flutter/LICENSE
ORIGIN: ../../../flutter/impeller/golden_tests/golden_digest.cc + ../../../flutter/LICENSE
ORIGIN: ../../../flutter/impeller/golden_tests/golden_digest.h + ../../../flutter/LICENSE
ORIGIN: ../../../flutter/impeller/golden_tests/golden_playground_test.h + ../../../flutter/LICENSE
Expand Down Expand Up @@ -42994,6 +42996,8 @@ FILE: ../../../flutter/impeller/geometry/type_traits.cc
FILE: ../../../flutter/impeller/geometry/type_traits.h
FILE: ../../../flutter/impeller/geometry/vector.cc
FILE: ../../../flutter/impeller/geometry/vector.h
FILE: ../../../flutter/impeller/geometry/wangs_formula.cc
FILE: ../../../flutter/impeller/geometry/wangs_formula.h
FILE: ../../../flutter/impeller/golden_tests/golden_digest.cc
FILE: ../../../flutter/impeller/golden_tests/golden_digest.h
FILE: ../../../flutter/impeller/golden_tests/golden_playground_test.h
Expand Down
2 changes: 2 additions & 0 deletions impeller/geometry/BUILD.gn
Original file line number Diff line number Diff line change
Expand Up @@ -43,6 +43,8 @@ impeller_component("geometry") {
"type_traits.h",
"vector.cc",
"vector.h",
"wangs_formula.cc",
"wangs_formula.h",
]

deps = [
Expand Down
75 changes: 9 additions & 66 deletions impeller/geometry/path_component.cc
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,8 @@

#include <cmath>

#include "impeller/geometry/wangs_formula.h"

namespace impeller {

/*
Expand Down Expand Up @@ -98,11 +100,6 @@ Point QuadraticPathComponent::SolveDerivative(Scalar time) const {
};
}

static Scalar ApproximateParabolaIntegral(Scalar x) {
constexpr Scalar d = 0.67;
return x / (1.0 - d + sqrt(sqrt(pow(d, 4) + 0.25 * x * x)));
}

void QuadraticPathComponent::AppendPolylinePoints(
Scalar scale_factor,
std::vector<Point>& points) const {
Expand All @@ -114,42 +111,10 @@ void QuadraticPathComponent::AppendPolylinePoints(
void QuadraticPathComponent::ToLinearPathComponents(
Scalar scale_factor,
const PointProc& proc) const {
auto tolerance = kDefaultCurveTolerance / scale_factor;
auto sqrt_tolerance = sqrt(tolerance);

auto d01 = cp - p1;
auto d12 = p2 - cp;
auto dd = d01 - d12;
auto cross = (p2 - p1).Cross(dd);
auto x0 = d01.Dot(dd) * 1 / cross;
auto x2 = d12.Dot(dd) * 1 / cross;
auto scale = std::abs(cross / (hypot(dd.x, dd.y) * (x2 - x0)));

auto a0 = ApproximateParabolaIntegral(x0);
auto a2 = ApproximateParabolaIntegral(x2);
Scalar val = 0.f;
if (std::isfinite(scale)) {
auto da = std::abs(a2 - a0);
auto sqrt_scale = sqrt(scale);
if ((x0 < 0 && x2 < 0) || (x0 >= 0 && x2 >= 0)) {
val = da * sqrt_scale;
} else {
// cusp case
auto xmin = sqrt_tolerance / sqrt_scale;
val = sqrt_tolerance * da / ApproximateParabolaIntegral(xmin);
}
}
auto u0 = ApproximateParabolaIntegral(a0);
auto u2 = ApproximateParabolaIntegral(a2);
auto uscale = 1 / (u2 - u0);

auto line_count = std::max(1., ceil(0.5 * val / sqrt_tolerance));
auto step = 1 / line_count;
Scalar line_count =
std::ceilf(ComputeQuadradicSubdivisions(scale_factor, *this));
for (size_t i = 1; i < line_count; i += 1) {
auto u = i * step;
auto a = a0 + (a2 - a0) * u;
auto t = (ApproximateParabolaIntegral(a) - u0) * uscale;
proc(Solve(t));
proc(Solve(i / line_count));
}
proc(p2);
}
Expand Down Expand Up @@ -217,33 +182,11 @@ CubicPathComponent CubicPathComponent::Subsegment(Scalar t0, Scalar t1) const {

void CubicPathComponent::ToLinearPathComponents(Scalar scale,
const PointProc& proc) const {
constexpr Scalar accuracy = 0.1;
// The maximum error, as a vector from the cubic to the best approximating
// quadratic, is proportional to the third derivative, which is constant
// across the segment. Thus, the error scales down as the third power of
// the number of subdivisions. Our strategy then is to subdivide `t` evenly.
//
// This is an overestimate of the error because only the component
// perpendicular to the first derivative is important. But the simplicity is
// appealing.

// This magic number is the square of 36 / sqrt(3).
// See: http://caffeineowl.com/graphics/2d/vectorial/cubic2quad01.html
auto max_hypot2 = 432.0 * accuracy * accuracy;
auto p1x2 = 3.0 * cp1 - p1;
auto p2x2 = 3.0 * cp2 - p2;
auto p = p2x2 - p1x2;
auto err = p.Dot(p);
auto quad_count = std::max(1., ceil(pow(err / max_hypot2, 1. / 6.0)));
for (size_t i = 0; i < quad_count; i++) {
auto t0 = i / quad_count;
auto t1 = (i + 1) / quad_count;
auto seg = Subsegment(t0, t1);
auto p1x2 = 3.0 * seg.cp1 - seg.p1;
auto p2x2 = 3.0 * seg.cp2 - seg.p2;
QuadraticPathComponent(seg.p1, ((p1x2 + p2x2) / 4.0), seg.p2)
.ToLinearPathComponents(scale, proc);
Scalar line_count = std::ceilf(ComputeCubicSubdivisions(scale, *this));
for (size_t i = 1; i < line_count; i++) {
proc(Solve(i / line_count));
}
proc(p2);
}

static inline bool NearEqual(Scalar a, Scalar b, Scalar epsilon) {
Expand Down
25 changes: 0 additions & 25 deletions impeller/geometry/path_component.h
Original file line number Diff line number Diff line change
Expand Up @@ -16,16 +16,6 @@

namespace impeller {

// The default tolerance value for QuadraticCurveComponent::AppendPolylinePoints
// and CubicCurveComponent::AppendPolylinePoints. It also impacts the number of
// quadratics created when flattening a cubic curve to a polyline.
//
// Smaller numbers mean more points. This number seems suitable for particularly
// curvy curves at scales close to 1.0. As the scale increases, this number
// should be divided by Matrix::GetMaxBasisLength to avoid generating too few
// points for the given scale.
static constexpr Scalar kDefaultCurveTolerance = .1f;

struct LinearPathComponent {
Point p1;
Point p2;
Expand Down Expand Up @@ -67,16 +57,6 @@ struct QuadraticPathComponent {

Point SolveDerivative(Scalar time) const;

// Uses the algorithm described by Raph Levien in
// https://raphlinus.github.io/graphics/curves/2019/12/23/flatten-quadbez.html.
//
// The algorithm has several benefits:
// - It does not require elevation to cubics for processing.
// - It generates fewer and more accurate points than recursive subdivision.
// - Each turn of the core iteration loop has no dependencies on other turns,
// making it trivially parallelizable.
//
// See also the implementation in kurbo: https://github.com/linebender/kurbo.
void AppendPolylinePoints(Scalar scale_factor,
std::vector<Point>& points) const;

Expand Down Expand Up @@ -121,11 +101,6 @@ struct CubicPathComponent {

Point SolveDerivative(Scalar time) const;

// This method approximates the cubic component with quadratics, and then
// generates a polyline from those quadratics.
//
// See the note on QuadraticPathComponent::AppendPolylinePoints for
// references.
void AppendPolylinePoints(Scalar scale, std::vector<Point>& points) const;

std::vector<Point> Extrema() const;
Expand Down
53 changes: 53 additions & 0 deletions impeller/geometry/wangs_formula.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,53 @@
// Copyright 2013 The Flutter Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "impeller/geometry/wangs_formula.h"

namespace impeller {

namespace {

// Don't allow linearized segments to be off by more than 1/4th of a pixel from
// the true curve. This value should be scaled by the max basis of the
// X and Y directions.
constexpr static Scalar kPrecision = 4;

constexpr Scalar length(Point n) {
Point nn = n * n;
return std::sqrt(nn.x + nn.y);
}

} // namespace

Scalar ComputeCubicSubdivisions(Scalar scale_factor,
Point p0,
Point p1,
Point p2,
Point p3) {
Scalar k = scale_factor * .75f * kPrecision;
Point a = (p0 - p1 * 2 + p2).Abs();
Point b = (p1 - p2 * 2 + p3).Abs();
return std::sqrt(k * length(a.Max(b)));
}

Scalar ComputeQuadradicSubdivisions(Scalar scale_factor,
Point p0,
Point p1,
Point p2) {
Scalar k = scale_factor * .25f * kPrecision;
return std::sqrt(k * length(p0 - p1 * 2 + p2));
}

Scalar ComputeQuadradicSubdivisions(Scalar scale_factor,
const QuadraticPathComponent& quad) {
return ComputeQuadradicSubdivisions(scale_factor, quad.p1, quad.cp, quad.p2);
}

Scalar ComputeCubicSubdivisions(float scale_factor,
const CubicPathComponent& cub) {
return ComputeCubicSubdivisions(scale_factor, cub.p1, cub.cp1, cub.cp2,
cub.p2);
}

} // namespace impeller
65 changes: 65 additions & 0 deletions impeller/geometry/wangs_formula.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,65 @@
// Copyright 2013 The Flutter Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef FLUTTER_IMPELLER_GEOMETRY_WANGS_FORMULA_H_
#define FLUTTER_IMPELLER_GEOMETRY_WANGS_FORMULA_H_

#include "impeller/geometry/path_component.h"
#include "impeller/geometry/point.h"
#include "impeller/geometry/scalar.h"

// Skia GPU Ports

// Wang's formula gives the minimum number of evenly spaced (in the parametric
// sense) line segments that a bezier curve must be chopped into in order to
// guarantee all lines stay within a distance of "1/precision" pixels from the
// true curve. Its definition for a bezier curve of degree "n" is as follows:
//
// maxLength = max([length(p[i+2] - 2p[i+1] + p[i]) for (0 <= i <= n-2)])
// numParametricSegments = sqrt(maxLength * precision * n*(n - 1)/8)
//
// (Goldman, Ron. (2003). 5.6.3 Wang's Formula. "Pyramid Algorithms: A Dynamic
// Programming Approach to Curves and Surfaces for Geometric Modeling". Morgan
// Kaufmann Publishers.)
namespace impeller {

/// Returns the minimum number of evenly spaced (in the parametric sense) line
/// segments that the cubic must be chopped into in order to guarantee all lines
/// stay within a distance of "1/intolerance" pixels from the true curve.
///
/// The scale_factor should be the max basis XY of the current transform.
Scalar ComputeCubicSubdivisions(Scalar scale_factor,
Point p0,
Point p1,
Point p2,
Point p3);

/// Returns the minimum number of evenly spaced (in the parametric sense) line
/// segments that the quadratic must be chopped into in order to guarantee all
/// lines stay within a distance of "1/intolerance" pixels from the true curve.
///
/// The scale_factor should be the max basis XY of the current transform.
Scalar ComputeQuadradicSubdivisions(Scalar scale_factor,
Point p0,
Point p1,
Point p2);

/// Returns the minimum number of evenly spaced (in the parametric sense) line
/// segments that the quadratic must be chopped into in order to guarantee all
/// lines stay within a distance of "1/intolerance" pixels from the true curve.
///
/// The scale_factor should be the max basis XY of the current transform.
Scalar ComputeQuadradicSubdivisions(Scalar scale_factor,
const QuadraticPathComponent& quad);

/// Returns the minimum number of evenly spaced (in the parametric sense) line
/// segments that the cubic must be chopped into in order to guarantee all lines
/// stay within a distance of "1/intolerance" pixels from the true curve.
///
/// The scale_factor should be the max basis XY of the current transform.
Scalar ComputeCubicSubdivisions(float scale_factor,
const CubicPathComponent& cub);
} // namespace impeller

#endif // FLUTTER_IMPELLER_GEOMETRY_WANGS_FORMULA_H_
2 changes: 1 addition & 1 deletion impeller/renderer/compute_tessellator.h
Original file line number Diff line number Diff line change
Expand Up @@ -77,7 +77,7 @@ class ComputeTessellator {
Cap stroke_cap_ = Cap::kButt;
Join stroke_join_ = Join::kMiter;
Scalar miter_limit_ = 4.0f;
Scalar cubic_accuracy_ = kDefaultCurveTolerance;
Scalar cubic_accuracy_ = .1f;
Scalar quad_tolerance_ = .1f;

ComputeTessellator(const ComputeTessellator&) = delete;
Expand Down
24 changes: 0 additions & 24 deletions impeller/tessellator/tessellator_unittests.cc
Original file line number Diff line number Diff line change
Expand Up @@ -78,30 +78,6 @@ TEST(TessellatorTest, TessellatorBuilderReturnsCorrectResultStatus) {

ASSERT_EQ(result, Tessellator::Result::kInputError);
}

// More than uint16 points, odd fill mode.
{
Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This is testing a case that no longer matters since we don't use the tessellator. i suspect it broke because we're now generating fewer line segments, since our cubic division isn't as cranky.

As a follow up I plan to delete most of this code.

Tessellator t;
PathBuilder builder = {};
for (auto i = 0; i < 1000; i++) {
builder.AddCircle(Point(i, i), 4);
}
auto path = builder.TakePath(FillType::kOdd);
bool no_indices = false;
size_t count = 0u;
Tessellator::Result result = t.Tessellate(
path, 1.0f,
[&no_indices, &count](const float* vertices, size_t vertices_count,
const uint16_t* indices, size_t indices_count) {
no_indices = indices == nullptr;
count = vertices_count;
return true;
});

ASSERT_TRUE(no_indices);
ASSERT_TRUE(count >= USHRT_MAX);
ASSERT_EQ(result, Tessellator::Result::kSuccess);
}
}

TEST(TessellatorTest, TessellateConvex) {
Expand Down