Skip to content

Commit

Permalink
Update train.py
Browse files Browse the repository at this point in the history
Remove redundant `opt.` prefix.
  • Loading branch information
NanoCode012 authored Jul 14, 2020
1 parent 5bf8beb commit cd90360
Showing 1 changed file with 16 additions and 16 deletions.
32 changes: 16 additions & 16 deletions train.py
Original file line number Diff line number Diff line change
Expand Up @@ -123,7 +123,7 @@ def train(hyp, tb_writer, opt, device):

# Load Model
# Avoid multiple downloads.
with torch_distributed_zero_first(opt.local_rank):
with torch_distributed_zero_first(local_rank):
google_utils.attempt_download(weights)
start_epoch, best_fitness = 0, 0.0
if weights.endswith('.pt'): # pytorch format
Expand All @@ -137,7 +137,7 @@ def train(hyp, tb_writer, opt, device):
except KeyError as e:
s = "%s is not compatible with %s. This may be due to model differences or %s may be out of date. " \
"Please delete or update %s and try again, or use --weights '' to train from scratch." \
% (opt.weights, opt.cfg, opt.weights, opt.weights)
% (weights, opt.cfg, weights, weights)
raise KeyError(s) from e

# load optimizer
Expand All @@ -154,7 +154,7 @@ def train(hyp, tb_writer, opt, device):
start_epoch = ckpt['epoch'] + 1
if epochs < start_epoch:
print('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' %
(opt.weights, ckpt['epoch'], epochs))
(weights, ckpt['epoch'], epochs))
epochs += ckpt['epoch'] # finetune additional epochs

del ckpt
Expand All @@ -170,30 +170,30 @@ def train(hyp, tb_writer, opt, device):
# plot_lr_scheduler(optimizer, scheduler, epochs)

# DP mode
if device.type != 'cpu' and opt.local_rank == -1 and torch.cuda.device_count() > 1:
if device.type != 'cpu' and local_rank == -1 and torch.cuda.device_count() > 1:
model = torch.nn.DataParallel(model)

# Exponential moving average
# From https://github.com/rwightman/pytorch-image-models/blob/master/train.py:
# "Important to create EMA model after cuda(), DP wrapper, and AMP but before SyncBN and DDP wrapper"
# chenyzsjtu: ema should be placed before after SyncBN. As SyncBN introduces new modules.
if device.type != 'cpu' and opt.local_rank != -1:
if device.type != 'cpu' and local_rank != -1:
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
ema = torch_utils.ModelEMA(model) if opt.local_rank in [-1, 0] else None
ema = torch_utils.ModelEMA(model) if local_rank in [-1, 0] else None

# DDP mode
if device.type != 'cpu' and opt.local_rank != -1:
if device.type != 'cpu' and local_rank != -1:
model = DDP(model, device_ids=[local_rank], output_device=local_rank)

# Trainloader
dataloader, dataset = create_dataloader(train_path, imgsz, batch_size, gs, opt,
hyp=hyp, augment=True, cache=opt.cache_images, rect=opt.rect, local_rank=opt.local_rank)
hyp=hyp, augment=True, cache=opt.cache_images, rect=opt.rect, local_rank=local_rank)
mlc = np.concatenate(dataset.labels, 0)[:, 0].max() # max label class
nb = len(dataloader) # number of batches
assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Correct your labels or your model.' % (mlc, nc, opt.cfg)

# Testloader
if opt.local_rank in [-1, 0]:
if local_rank in [-1, 0]:
# local_rank is set to -1. Because only the first process is expected to do evaluation.
testloader = create_dataloader(test_path, imgsz_test, total_batch_size, gs, opt,
hyp=hyp, augment=False, cache=opt.cache_images, rect=True, local_rank=-1)[0]
Expand Down Expand Up @@ -226,7 +226,7 @@ def train(hyp, tb_writer, opt, device):
maps = np.zeros(nc) # mAP per class
results = (0, 0, 0, 0, 0, 0, 0) # 'P', 'R', 'mAP', 'F1', 'val GIoU', 'val Objectness', 'val Classification'
scheduler.last_epoch = start_epoch - 1 # do not move
if opt.local_rank in [0, -1]:
if local_rank in [0, -1]:
print('Image sizes %g train, %g test' % (imgsz, imgsz_test))
print('Using %g dataloader workers' % dataloader.num_workers)
print('Starting training for %g epochs...' % epochs)
Expand Down Expand Up @@ -256,9 +256,9 @@ def train(hyp, tb_writer, opt, device):
# dataset.mosaic_border = [b - imgsz, -b] # height, width borders

mloss = torch.zeros(4, device=device) # mean losses
if opt.local_rank != -1:
if local_rank != -1:
dataloader.sampler.set_epoch(epoch)
if opt.local_rank in [-1, 0]:
if local_rank in [-1, 0]:
print(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'GIoU', 'obj', 'cls', 'total', 'targets', 'img_size'))
pbar = tqdm(enumerate(dataloader), total=nb) # progress bar
else:
Expand Down Expand Up @@ -293,7 +293,7 @@ def train(hyp, tb_writer, opt, device):
# Loss
loss, loss_items = compute_loss(pred, targets.to(device), model)
# loss is scaled with batch size in func compute_loss. But in DDP mode, gradient is averaged between devices.
if opt.local_rank != -1:
if local_rank != -1:
loss *= dist.get_world_size()
if not torch.isfinite(loss):
print('WARNING: non-finite loss, ending training ', loss_items)
Expand All @@ -314,7 +314,7 @@ def train(hyp, tb_writer, opt, device):
ema.update(model)

# Print
if opt.local_rank in [-1, 0]:
if local_rank in [-1, 0]:
mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
mem = '%.3gG' % (torch.cuda.memory_cached() / 1E9 if torch.cuda.is_available() else 0) # (GB)
s = ('%10s' * 2 + '%10.4g' * 6) % (
Expand All @@ -335,7 +335,7 @@ def train(hyp, tb_writer, opt, device):
scheduler.step()

# Only the first process in DDP mode is allowed to log or save checkpoints.
if opt.local_rank in [-1, 0]:
if local_rank in [-1, 0]:
# mAP
if ema is not None:
ema.update_attr(model, include=['md', 'nc', 'hyp', 'gr', 'names', 'stride'])
Expand Down Expand Up @@ -387,7 +387,7 @@ def train(hyp, tb_writer, opt, device):
# end epoch ----------------------------------------------------------------------------------------------------
# end training

if opt.local_rank in [-1, 0]:
if local_rank in [-1, 0]:
# Strip optimizers
n = ('_' if len(opt.name) and not opt.name.isnumeric() else '') + opt.name
fresults, flast, fbest = 'results%s.txt' % n, wdir + 'last%s.pt' % n, wdir + 'best%s.pt' % n
Expand Down

0 comments on commit cd90360

Please sign in to comment.