Skip to content

Commit

Permalink
Merge branch 'master' of https://github.com/ultralytics/yolov5 into f…
Browse files Browse the repository at this point in the history
…eature/DDP_fixed
  • Loading branch information
yizhi.chen committed Jul 7, 2020
2 parents ec2dc6c + 121d90b commit b9a50ae
Show file tree
Hide file tree
Showing 12 changed files with 375 additions and 96 deletions.
8 changes: 6 additions & 2 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -41,9 +41,13 @@ $ pip install -U -r requirements.txt
## Tutorials

* [Notebook](https://github.com/ultralytics/yolov5/blob/master/tutorial.ipynb) <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
* [Kaggle](https://www.kaggle.com/ultralytics/yolov5-tutorial)
* [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data)
* [Google Cloud Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)
* [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart) ![Docker Pulls](https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker)
* [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36)
* [ONNX and TorchScript Export](https://github.com/ultralytics/yolov5/issues/251)
* [Test-Time Augmentation (TTA)](https://github.com/ultralytics/yolov5/issues/303)
* [Google Cloud Quickstart](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)
* [Docker Quickstart](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart) ![Docker Pulls](https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker)


## Inference
Expand Down
10 changes: 7 additions & 3 deletions data/get_coco2017.sh
Original file line number Diff line number Diff line change
@@ -1,7 +1,11 @@
#!/bin/bash
# Zip coco folder
# zip -r coco.zip coco
# tar -czvf coco.tar.gz coco
# COCO 2017 dataset http://cocodataset.org
# Download command: bash yolov5/data/get_coco2017.sh
# Train command: python train.py --data ./data/coco.yaml
# Dataset should be placed next to yolov5 folder:
# /parent_folder
# /coco
# /yolov5

# Download labels from Google Drive, accepting presented query
filename="coco2017labels.zip"
Expand Down
214 changes: 214 additions & 0 deletions data/get_voc.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,214 @@
# PASCAL VOC dataset http://host.robots.ox.ac.uk/pascal/VOC/
# Download command: bash ./data/get_voc.sh
# Train command: python train.py --data voc.yaml
# Dataset should be placed next to yolov5 folder:
# /parent_folder
# /VOC
# /yolov5

start=`date +%s`

# handle optional download dir
if [ -z "$1" ]
then
# navigate to ~/tmp
echo "navigating to ../tmp/ ..."
mkdir -p ../tmp
cd ../tmp/
else
# check if is valid directory
if [ ! -d $1 ]; then
echo $1 "is not a valid directory"
exit 0
fi
echo "navigating to" $1 "..."
cd $1
fi

echo "Downloading VOC2007 trainval ..."
# Download the data.
curl -LO http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar
echo "Downloading VOC2007 test data ..."
curl -LO http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar
echo "Done downloading."

# Extract data
echo "Extracting trainval ..."
tar -xf VOCtrainval_06-Nov-2007.tar
echo "Extracting test ..."
tar -xf VOCtest_06-Nov-2007.tar
echo "removing tars ..."
rm VOCtrainval_06-Nov-2007.tar
rm VOCtest_06-Nov-2007.tar

end=`date +%s`
runtime=$((end-start))

echo "Completed in" $runtime "seconds"

start=`date +%s`

# handle optional download dir
if [ -z "$1" ]
then
# navigate to ~/tmp
echo "navigating to ../tmp/ ..."
mkdir -p ../tmp
cd ../tmp/
else
# check if is valid directory
if [ ! -d $1 ]; then
echo $1 "is not a valid directory"
exit 0
fi
echo "navigating to" $1 "..."
cd $1
fi

echo "Downloading VOC2012 trainval ..."
# Download the data.
curl -LO http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
echo "Done downloading."


# Extract data
echo "Extracting trainval ..."
tar -xf VOCtrainval_11-May-2012.tar
echo "removing tar ..."
rm VOCtrainval_11-May-2012.tar

end=`date +%s`
runtime=$((end-start))

echo "Completed in" $runtime "seconds"

cd ../tmp
echo "Spliting dataset..."
python3 - "$@" <<END
import xml.etree.ElementTree as ET
import pickle
import os
from os import listdir, getcwd
from os.path import join
sets=[('2012', 'train'), ('2012', 'val'), ('2007', 'train'), ('2007', 'val'), ('2007', 'test')]
classes = ["aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"]
def convert(size, box):
dw = 1./(size[0])
dh = 1./(size[1])
x = (box[0] + box[1])/2.0 - 1
y = (box[2] + box[3])/2.0 - 1
w = box[1] - box[0]
h = box[3] - box[2]
x = x*dw
w = w*dw
y = y*dh
h = h*dh
return (x,y,w,h)
def convert_annotation(year, image_id):
in_file = open('VOCdevkit/VOC%s/Annotations/%s.xml'%(year, image_id))
out_file = open('VOCdevkit/VOC%s/labels/%s.txt'%(year, image_id), 'w')
tree=ET.parse(in_file)
root = tree.getroot()
size = root.find('size')
w = int(size.find('width').text)
h = int(size.find('height').text)
for obj in root.iter('object'):
difficult = obj.find('difficult').text
cls = obj.find('name').text
if cls not in classes or int(difficult)==1:
continue
cls_id = classes.index(cls)
xmlbox = obj.find('bndbox')
b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text))
bb = convert((w,h), b)
out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
wd = getcwd()
for year, image_set in sets:
if not os.path.exists('VOCdevkit/VOC%s/labels/'%(year)):
os.makedirs('VOCdevkit/VOC%s/labels/'%(year))
image_ids = open('VOCdevkit/VOC%s/ImageSets/Main/%s.txt'%(year, image_set)).read().strip().split()
list_file = open('%s_%s.txt'%(year, image_set), 'w')
for image_id in image_ids:
list_file.write('%s/VOCdevkit/VOC%s/JPEGImages/%s.jpg\n'%(wd, year, image_id))
convert_annotation(year, image_id)
list_file.close()
END

cat 2007_train.txt 2007_val.txt 2012_train.txt 2012_val.txt > train.txt
cat 2007_train.txt 2007_val.txt 2007_test.txt 2012_train.txt 2012_val.txt > train.all.txt

python3 - "$@" <<END
import shutil
import os
os.system('mkdir ../VOC/')
os.system('mkdir ../VOC/images')
os.system('mkdir ../VOC/images/train')
os.system('mkdir ../VOC/images/val')
os.system('mkdir ../VOC/labels')
os.system('mkdir ../VOC/labels/train')
os.system('mkdir ../VOC/labels/val')
import os
print(os.path.exists('../tmp/train.txt'))
f = open('../tmp/train.txt', 'r')
lines = f.readlines()
for line in lines:
#print(line.split('/')[-1][:-1])
line = "/".join(line.split('/')[2:])
#print(line)
if (os.path.exists("../" + line[:-1])):
os.system("cp ../"+ line[:-1] + " ../VOC/images/train")
print(os.path.exists('../tmp/train.txt'))
f = open('../tmp/train.txt', 'r')
lines = f.readlines()
for line in lines:
#print(line.split('/')[-1][:-1])
line = "/".join(line.split('/')[2:])
line = line.replace('JPEGImages', 'labels')
line = line.replace('jpg', 'txt')
#print(line)
if (os.path.exists("../" + line[:-1])):
os.system("cp ../"+ line[:-1] + " ../VOC/labels/train")
print(os.path.exists('../tmp/2007_test.txt'))
f = open('../tmp/2007_test.txt', 'r')
lines = f.readlines()
for line in lines:
#print(line.split('/')[-1][:-1])
line = "/".join(line.split('/')[2:])
if (os.path.exists("../" + line[:-1])):
os.system("cp ../"+ line[:-1] + " ../VOC/images/val")
print(os.path.exists('../tmp/2007_test.txt'))
f = open('../tmp/2007_test.txt', 'r')
lines = f.readlines()
for line in lines:
#print(line.split('/')[-1][:-1])
line = "/".join(line.split('/')[2:])
line = line.replace('JPEGImages', 'labels')
line = line.replace('jpg', 'txt')
#print(line)
if (os.path.exists("../" + line[:-1])):
os.system("cp ../"+ line[:-1] + " ../VOC/labels/val")
END

rm -rf ../tmp # remove temporary directory
echo "VOC download done."
18 changes: 18 additions & 0 deletions data/voc.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,18 @@
# PASCAL VOC dataset http://host.robots.ox.ac.uk/pascal/VOC/
# Download command: bash ./data/get_voc.sh
# Train command: python train.py --data voc.yaml
# Dataset should be placed next to yolov5 folder:
# /parent_folder
# /VOC
# /yolov5

# train and val datasets (image directory or *.txt file with image paths)
train: ../VOC/images/train/
val: ../VOC/images/val/

# number of classes
nc: 20

# class names
names: ['aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog',
'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor']
24 changes: 11 additions & 13 deletions detect.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,11 +21,8 @@ def detect(save_img=False):

# Load model
google_utils.attempt_download(weights)
model = torch.load(weights, map_location=device)['model'].float() # load to FP32
# torch.save(torch.load(weights, map_location=device), weights) # update model if SourceChangeWarning
# model.fuse()
model.to(device).eval()
imgsz = check_img_size(imgsz, s=model.model[-1].stride.max()) # check img_size
model = torch.load(weights, map_location=device)['model'].float().eval() # load FP32 model
imgsz = check_img_size(imgsz, s=model.stride.max()) # check img_size
if half:
model.half() # to FP16

Expand Down Expand Up @@ -123,10 +120,11 @@ def detect(save_img=False):
if isinstance(vid_writer, cv2.VideoWriter):
vid_writer.release() # release previous video writer

fourcc = 'mp4v' # output video codec
fps = vid_cap.get(cv2.CAP_PROP_FPS)
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*opt.fourcc), fps, (w, h))
vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (w, h))
vid_writer.write(im0)

if save_txt or save_img:
Expand All @@ -145,20 +143,20 @@ def detect(save_img=False):
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
parser.add_argument('--conf-thres', type=float, default=0.4, help='object confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.5, help='IOU threshold for NMS')
parser.add_argument('--fourcc', type=str, default='mp4v', help='output video codec (verify ffmpeg support)')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--view-img', action='store_true', help='display results')
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
parser.add_argument('--classes', nargs='+', type=int, help='filter by class')
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
parser.add_argument('--augment', action='store_true', help='augmented inference')
parser.add_argument('--update', action='store_true', help='update all models')
opt = parser.parse_args()
print(opt)

with torch.no_grad():
detect()

# # Update all models
# for opt.weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt', 'yolov3-spp.pt']:
# detect()
# create_pretrained(opt.weights, opt.weights)
if opt.update: # update all models (to fix SourceChangeWarning)
for opt.weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt', 'yolov3-spp.pt']:
detect()
create_pretrained(opt.weights, opt.weights)
else:
detect()
34 changes: 18 additions & 16 deletions models/experimental.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,12 +4,13 @@


class CrossConv(nn.Module):
# Cross Convolution
def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
# Cross Convolution Downsample
def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False):
# ch_in, ch_out, kernel, stride, groups, expansion, shortcut
super(CrossConv, self).__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, c_, (1, 3), 1)
self.cv2 = Conv(c_, c2, (3, 1), 1, g=g)
self.cv1 = Conv(c1, c_, (1, k), (1, s))
self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g)
self.add = shortcut and c1 == c2

def forward(self, x):
Expand All @@ -27,7 +28,7 @@ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, nu
self.cv4 = Conv(2 * c_, c2, 1, 1)
self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3)
self.act = nn.LeakyReLU(0.1, inplace=True)
self.m = nn.Sequential(*[CrossConv(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
self.m = nn.Sequential(*[CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)])

def forward(self, x):
y1 = self.cv3(self.m(self.cv1(x)))
Expand Down Expand Up @@ -84,17 +85,6 @@ def forward(self, x):
return self.conv(x) + self.shortcut(x)


class ConvPlus(nn.Module):
# Plus-shaped convolution
def __init__(self, c1, c2, k=3, s=1, g=1, bias=True): # ch_in, ch_out, kernel, stride, groups
super(ConvPlus, self).__init__()
self.cv1 = nn.Conv2d(c1, c2, (k, 1), s, (k // 2, 0), groups=g, bias=bias)
self.cv2 = nn.Conv2d(c1, c2, (1, k), s, (0, k // 2), groups=g, bias=bias)

def forward(self, x):
return self.cv1(x) + self.cv2(x)


class MixConv2d(nn.Module):
# Mixed Depthwise Conv https://arxiv.org/abs/1907.09595
def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True):
Expand All @@ -117,3 +107,15 @@ def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True):

def forward(self, x):
return x + self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))


class Ensemble(nn.ModuleList):
# Ensemble of models
def __init__(self):
super(Ensemble, self).__init__()

def forward(self, x, augment=False):
y = []
for module in self:
y.append(module(x, augment)[0])
return torch.cat(y, 1), None # ensembled inference output, train output
Loading

0 comments on commit b9a50ae

Please sign in to comment.