Skip to content

Commit

Permalink
Fix save_one_box() (ultralytics#5545)
Browse files Browse the repository at this point in the history
* Fix `save_one_box()`

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
  • Loading branch information
glenn-jocher and pre-commit-ci[bot] authored Nov 6, 2021
1 parent 480a429 commit b9142d6
Show file tree
Hide file tree
Showing 4 changed files with 76 additions and 76 deletions.
6 changes: 3 additions & 3 deletions detect.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,9 +26,9 @@
from models.experimental import attempt_load
from utils.datasets import IMG_FORMATS, VID_FORMATS, LoadImages, LoadStreams
from utils.general import (LOGGER, apply_classifier, check_file, check_img_size, check_imshow, check_requirements,
check_suffix, colorstr, increment_path, non_max_suppression, print_args, save_one_box,
scale_coords, strip_optimizer, xyxy2xywh)
from utils.plots import Annotator, colors
check_suffix, colorstr, increment_path, non_max_suppression, print_args, scale_coords,
strip_optimizer, xyxy2xywh)
from utils.plots import Annotator, colors, save_one_box
from utils.torch_utils import load_classifier, select_device, time_sync


Expand Down
5 changes: 2 additions & 3 deletions models/common.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,9 +18,8 @@
from torch.cuda import amp

from utils.datasets import exif_transpose, letterbox
from utils.general import (colorstr, increment_path, make_divisible, non_max_suppression, save_one_box, scale_coords,
xyxy2xywh)
from utils.plots import Annotator, colors
from utils.general import colorstr, increment_path, make_divisible, non_max_suppression, scale_coords, xyxy2xywh
from utils.plots import Annotator, colors, save_one_box
from utils.torch_utils import time_sync

LOGGER = logging.getLogger(__name__)
Expand Down
15 changes: 0 additions & 15 deletions utils/general.py
Original file line number Diff line number Diff line change
Expand Up @@ -819,21 +819,6 @@ def apply_classifier(x, model, img, im0):
return x


def save_one_box(xyxy, im, file='image.jpg', gain=1.02, pad=10, square=False, BGR=False, save=True):
# Save image crop as {file} with crop size multiple {gain} and {pad} pixels. Save and/or return crop
xyxy = torch.tensor(xyxy).view(-1, 4)
b = xyxy2xywh(xyxy) # boxes
if square:
b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # attempt rectangle to square
b[:, 2:] = b[:, 2:] * gain + pad # box wh * gain + pad
xyxy = xywh2xyxy(b).long()
clip_coords(xyxy, im.shape)
crop = im[int(xyxy[0, 1]):int(xyxy[0, 3]), int(xyxy[0, 0]):int(xyxy[0, 2]), ::(1 if BGR else -1)]
if save:
cv2.imwrite(str(increment_path(file, mkdir=True).with_suffix('.jpg')), crop)
return crop


def increment_path(path, exist_ok=False, sep='', mkdir=False):
# Increment file or directory path, i.e. runs/exp --> runs/exp{sep}2, runs/exp{sep}3, ... etc.
path = Path(path) # os-agnostic
Expand Down
126 changes: 71 additions & 55 deletions utils/plots.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,7 @@
import torch
from PIL import Image, ImageDraw, ImageFont

from utils.general import is_ascii, is_chinese, user_config_dir, xywh2xyxy, xyxy2xywh
from utils.general import clip_coords, increment_path, is_ascii, is_chinese, user_config_dir, xywh2xyxy, xyxy2xywh
from utils.metrics import fitness

# Settings
Expand Down Expand Up @@ -117,6 +117,33 @@ def result(self):
return np.asarray(self.im)


def feature_visualization(x, module_type, stage, n=32, save_dir=Path('runs/detect/exp')):
"""
x: Features to be visualized
module_type: Module type
stage: Module stage within model
n: Maximum number of feature maps to plot
save_dir: Directory to save results
"""
if 'Detect' not in module_type:
batch, channels, height, width = x.shape # batch, channels, height, width
if height > 1 and width > 1:
f = f"stage{stage}_{module_type.split('.')[-1]}_features.png" # filename

blocks = torch.chunk(x[0].cpu(), channels, dim=0) # select batch index 0, block by channels
n = min(n, channels) # number of plots
fig, ax = plt.subplots(math.ceil(n / 8), 8, tight_layout=True) # 8 rows x n/8 cols
ax = ax.ravel()
plt.subplots_adjust(wspace=0.05, hspace=0.05)
for i in range(n):
ax[i].imshow(blocks[i].squeeze()) # cmap='gray'
ax[i].axis('off')

print(f'Saving {save_dir / f}... ({n}/{channels})')
plt.savefig(save_dir / f, dpi=300, bbox_inches='tight')
plt.close()


def hist2d(x, y, n=100):
# 2d histogram used in labels.png and evolve.png
xedges, yedges = np.linspace(x.min(), x.max(), n), np.linspace(y.min(), y.max(), n)
Expand Down Expand Up @@ -337,37 +364,6 @@ def plot_labels(labels, names=(), save_dir=Path('')):
plt.close()


def profile_idetection(start=0, stop=0, labels=(), save_dir=''):
# Plot iDetection '*.txt' per-image logs. from utils.plots import *; profile_idetection()
ax = plt.subplots(2, 4, figsize=(12, 6), tight_layout=True)[1].ravel()
s = ['Images', 'Free Storage (GB)', 'RAM Usage (GB)', 'Battery', 'dt_raw (ms)', 'dt_smooth (ms)', 'real-world FPS']
files = list(Path(save_dir).glob('frames*.txt'))
for fi, f in enumerate(files):
try:
results = np.loadtxt(f, ndmin=2).T[:, 90:-30] # clip first and last rows
n = results.shape[1] # number of rows
x = np.arange(start, min(stop, n) if stop else n)
results = results[:, x]
t = (results[0] - results[0].min()) # set t0=0s
results[0] = x
for i, a in enumerate(ax):
if i < len(results):
label = labels[fi] if len(labels) else f.stem.replace('frames_', '')
a.plot(t, results[i], marker='.', label=label, linewidth=1, markersize=5)
a.set_title(s[i])
a.set_xlabel('time (s)')
# if fi == len(files) - 1:
# a.set_ylim(bottom=0)
for side in ['top', 'right']:
a.spines[side].set_visible(False)
else:
a.remove()
except Exception as e:
print(f'Warning: Plotting error for {f}; {e}')
ax[1].legend()
plt.savefig(Path(save_dir) / 'idetection_profile.png', dpi=200)


def plot_evolve(evolve_csv='path/to/evolve.csv'): # from utils.plots import *; plot_evolve()
# Plot evolve.csv hyp evolution results
evolve_csv = Path(evolve_csv)
Expand Down Expand Up @@ -420,28 +416,48 @@ def plot_results(file='path/to/results.csv', dir=''):
plt.close()


def feature_visualization(x, module_type, stage, n=32, save_dir=Path('runs/detect/exp')):
"""
x: Features to be visualized
module_type: Module type
stage: Module stage within model
n: Maximum number of feature maps to plot
save_dir: Directory to save results
"""
if 'Detect' not in module_type:
batch, channels, height, width = x.shape # batch, channels, height, width
if height > 1 and width > 1:
f = f"stage{stage}_{module_type.split('.')[-1]}_features.png" # filename
def profile_idetection(start=0, stop=0, labels=(), save_dir=''):
# Plot iDetection '*.txt' per-image logs. from utils.plots import *; profile_idetection()
ax = plt.subplots(2, 4, figsize=(12, 6), tight_layout=True)[1].ravel()
s = ['Images', 'Free Storage (GB)', 'RAM Usage (GB)', 'Battery', 'dt_raw (ms)', 'dt_smooth (ms)', 'real-world FPS']
files = list(Path(save_dir).glob('frames*.txt'))
for fi, f in enumerate(files):
try:
results = np.loadtxt(f, ndmin=2).T[:, 90:-30] # clip first and last rows
n = results.shape[1] # number of rows
x = np.arange(start, min(stop, n) if stop else n)
results = results[:, x]
t = (results[0] - results[0].min()) # set t0=0s
results[0] = x
for i, a in enumerate(ax):
if i < len(results):
label = labels[fi] if len(labels) else f.stem.replace('frames_', '')
a.plot(t, results[i], marker='.', label=label, linewidth=1, markersize=5)
a.set_title(s[i])
a.set_xlabel('time (s)')
# if fi == len(files) - 1:
# a.set_ylim(bottom=0)
for side in ['top', 'right']:
a.spines[side].set_visible(False)
else:
a.remove()
except Exception as e:
print(f'Warning: Plotting error for {f}; {e}')
ax[1].legend()
plt.savefig(Path(save_dir) / 'idetection_profile.png', dpi=200)

blocks = torch.chunk(x[0].cpu(), channels, dim=0) # select batch index 0, block by channels
n = min(n, channels) # number of plots
fig, ax = plt.subplots(math.ceil(n / 8), 8, tight_layout=True) # 8 rows x n/8 cols
ax = ax.ravel()
plt.subplots_adjust(wspace=0.05, hspace=0.05)
for i in range(n):
ax[i].imshow(blocks[i].squeeze()) # cmap='gray'
ax[i].axis('off')

print(f'Saving {save_dir / f}... ({n}/{channels})')
plt.savefig(save_dir / f, dpi=300, bbox_inches='tight')
plt.close()
def save_one_box(xyxy, im, file='image.jpg', gain=1.02, pad=10, square=False, BGR=False, save=True):
# Save image crop as {file} with crop size multiple {gain} and {pad} pixels. Save and/or return crop
xyxy = torch.tensor(xyxy).view(-1, 4)
b = xyxy2xywh(xyxy) # boxes
if square:
b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # attempt rectangle to square
b[:, 2:] = b[:, 2:] * gain + pad # box wh * gain + pad
xyxy = xywh2xyxy(b).long()
clip_coords(xyxy, im.shape)
crop = im[int(xyxy[0, 1]):int(xyxy[0, 3]), int(xyxy[0, 0]):int(xyxy[0, 2]), ::(1 if BGR else -1)]
if save:
file.parent.mkdir(parents=True, exist_ok=True) # make directory
cv2.imwrite(str(increment_path(file).with_suffix('.jpg')), crop)
return crop

0 comments on commit b9142d6

Please sign in to comment.