Skip to content

Commit

Permalink
AutoAnchor and AutoBatch LOGGER (ultralytics#5635)
Browse files Browse the repository at this point in the history
* AutoBatch, AutoAnchor `LOGGER`

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update autoanchor.py

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
  • Loading branch information
glenn-jocher and pre-commit-ci[bot] authored Nov 13, 2021
1 parent 66ac695 commit 8a79868
Show file tree
Hide file tree
Showing 3 changed files with 36 additions and 34 deletions.
50 changes: 26 additions & 24 deletions utils/autoanchor.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,9 @@
import yaml
from tqdm import tqdm

from utils.general import colorstr
from utils.general import LOGGER, colorstr, emojis

PREFIX = colorstr('AutoAnchor: ')


def check_anchor_order(m):
Expand All @@ -19,14 +21,12 @@ def check_anchor_order(m):
da = a[-1] - a[0] # delta a
ds = m.stride[-1] - m.stride[0] # delta s
if da.sign() != ds.sign(): # same order
print('Reversing anchor order')
LOGGER.info(f'{PREFIX}Reversing anchor order')
m.anchors[:] = m.anchors.flip(0)


def check_anchors(dataset, model, thr=4.0, imgsz=640):
# Check anchor fit to data, recompute if necessary
prefix = colorstr('autoanchor: ')
print(f'\n{prefix}Analyzing anchors... ', end='')
m = model.module.model[-1] if hasattr(model, 'module') else model.model[-1] # Detect()
shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True)
scale = np.random.uniform(0.9, 1.1, size=(shapes.shape[0], 1)) # augment scale
Expand All @@ -42,23 +42,24 @@ def metric(k): # compute metric

anchors = m.anchors.clone() * m.stride.to(m.anchors.device).view(-1, 1, 1) # current anchors
bpr, aat = metric(anchors.cpu().view(-1, 2))
print(f'anchors/target = {aat:.2f}, Best Possible Recall (BPR) = {bpr:.4f}', end='')
if bpr < 0.98: # threshold to recompute
print('. Attempting to improve anchors, please wait...')
s = f'\n{PREFIX}{aat:.2f} anchors/target, {bpr:.3f} Best Possible Recall (BPR). '
if bpr > 0.98: # threshold to recompute
LOGGER.info(emojis(f'{s}Current anchors are a good fit to dataset ✅'))
else:
LOGGER.info(emojis(f'{s}Anchors are a poor fit to dataset ⚠️, attempting to improve...'))
na = m.anchors.numel() // 2 # number of anchors
try:
anchors = kmean_anchors(dataset, n=na, img_size=imgsz, thr=thr, gen=1000, verbose=False)
except Exception as e:
print(f'{prefix}ERROR: {e}')
LOGGER.info(f'{PREFIX}ERROR: {e}')
new_bpr = metric(anchors)[0]
if new_bpr > bpr: # replace anchors
anchors = torch.tensor(anchors, device=m.anchors.device).type_as(m.anchors)
m.anchors[:] = anchors.clone().view_as(m.anchors) / m.stride.to(m.anchors.device).view(-1, 1, 1) # loss
check_anchor_order(m)
print(f'{prefix}New anchors saved to model. Update model *.yaml to use these anchors in the future.')
LOGGER.info(f'{PREFIX}New anchors saved to model. Update model *.yaml to use these anchors in the future.')
else:
print(f'{prefix}Original anchors better than new anchors. Proceeding with original anchors.')
print('') # newline
LOGGER.info(f'{PREFIX}Original anchors better than new anchors. Proceeding with original anchors.')


def kmean_anchors(dataset='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=1000, verbose=True):
Expand All @@ -81,7 +82,6 @@ def kmean_anchors(dataset='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen
from scipy.cluster.vq import kmeans

thr = 1 / thr
prefix = colorstr('autoanchor: ')

def metric(k, wh): # compute metrics
r = wh[:, None] / k[None]
Expand All @@ -93,15 +93,17 @@ def anchor_fitness(k): # mutation fitness
_, best = metric(torch.tensor(k, dtype=torch.float32), wh)
return (best * (best > thr).float()).mean() # fitness

def print_results(k):
def print_results(k, verbose=True):
k = k[np.argsort(k.prod(1))] # sort small to large
x, best = metric(k, wh0)
bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n # best possible recall, anch > thr
print(f'{prefix}thr={thr:.2f}: {bpr:.4f} best possible recall, {aat:.2f} anchors past thr')
print(f'{prefix}n={n}, img_size={img_size}, metric_all={x.mean():.3f}/{best.mean():.3f}-mean/best, '
f'past_thr={x[x > thr].mean():.3f}-mean: ', end='')
s = f'{PREFIX}thr={thr:.2f}: {bpr:.4f} best possible recall, {aat:.2f} anchors past thr\n' \
f'{PREFIX}n={n}, img_size={img_size}, metric_all={x.mean():.3f}/{best.mean():.3f}-mean/best, ' \
f'past_thr={x[x > thr].mean():.3f}-mean: '
for i, x in enumerate(k):
print('%i,%i' % (round(x[0]), round(x[1])), end=', ' if i < len(k) - 1 else '\n') # use in *.cfg
s += '%i,%i, ' % (round(x[0]), round(x[1]))
if verbose:
LOGGER.info(s[:-2])
return k

if isinstance(dataset, str): # *.yaml file
Expand All @@ -117,19 +119,19 @@ def print_results(k):
# Filter
i = (wh0 < 3.0).any(1).sum()
if i:
print(f'{prefix}WARNING: Extremely small objects found. {i} of {len(wh0)} labels are < 3 pixels in size.')
LOGGER.info(f'{PREFIX}WARNING: Extremely small objects found. {i} of {len(wh0)} labels are < 3 pixels in size.')
wh = wh0[(wh0 >= 2.0).any(1)] # filter > 2 pixels
# wh = wh * (np.random.rand(wh.shape[0], 1) * 0.9 + 0.1) # multiply by random scale 0-1

# Kmeans calculation
print(f'{prefix}Running kmeans for {n} anchors on {len(wh)} points...')
LOGGER.info(f'{PREFIX}Running kmeans for {n} anchors on {len(wh)} points...')
s = wh.std(0) # sigmas for whitening
k, dist = kmeans(wh / s, n, iter=30) # points, mean distance
assert len(k) == n, f'{prefix}ERROR: scipy.cluster.vq.kmeans requested {n} points but returned only {len(k)}'
assert len(k) == n, f'{PREFIX}ERROR: scipy.cluster.vq.kmeans requested {n} points but returned only {len(k)}'
k *= s
wh = torch.tensor(wh, dtype=torch.float32) # filtered
wh0 = torch.tensor(wh0, dtype=torch.float32) # unfiltered
k = print_results(k)
k = print_results(k, verbose=False)

# Plot
# k, d = [None] * 20, [None] * 20
Expand All @@ -146,7 +148,7 @@ def print_results(k):
# Evolve
npr = np.random
f, sh, mp, s = anchor_fitness(k), k.shape, 0.9, 0.1 # fitness, generations, mutation prob, sigma
pbar = tqdm(range(gen), desc=f'{prefix}Evolving anchors with Genetic Algorithm:') # progress bar
pbar = tqdm(range(gen), desc=f'{PREFIX}Evolving anchors with Genetic Algorithm:') # progress bar
for _ in pbar:
v = np.ones(sh)
while (v == 1).all(): # mutate until a change occurs (prevent duplicates)
Expand All @@ -155,8 +157,8 @@ def print_results(k):
fg = anchor_fitness(kg)
if fg > f:
f, k = fg, kg.copy()
pbar.desc = f'{prefix}Evolving anchors with Genetic Algorithm: fitness = {f:.4f}'
pbar.desc = f'{PREFIX}Evolving anchors with Genetic Algorithm: fitness = {f:.4f}'
if verbose:
print_results(k)
print_results(k, verbose)

return print_results(k)
14 changes: 7 additions & 7 deletions utils/autobatch.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@
import torch
from torch.cuda import amp

from utils.general import colorstr
from utils.general import LOGGER, colorstr
from utils.torch_utils import profile


Expand All @@ -27,11 +27,11 @@ def autobatch(model, imgsz=640, fraction=0.9, batch_size=16):
# model = torch.hub.load('ultralytics/yolov5', 'yolov5s', autoshape=False)
# print(autobatch(model))

prefix = colorstr('autobatch: ')
print(f'{prefix}Computing optimal batch size for --imgsz {imgsz}')
prefix = colorstr('AutoBatch: ')
LOGGER.info(f'{prefix}Computing optimal batch size for --imgsz {imgsz}')
device = next(model.parameters()).device # get model device
if device.type == 'cpu':
print(f'{prefix}CUDA not detected, using default CPU batch-size {batch_size}')
LOGGER.info(f'{prefix}CUDA not detected, using default CPU batch-size {batch_size}')
return batch_size

d = str(device).upper() # 'CUDA:0'
Expand All @@ -40,18 +40,18 @@ def autobatch(model, imgsz=640, fraction=0.9, batch_size=16):
r = torch.cuda.memory_reserved(device) / 1024 ** 3 # (GiB)
a = torch.cuda.memory_allocated(device) / 1024 ** 3 # (GiB)
f = t - (r + a) # free inside reserved
print(f'{prefix}{d} ({properties.name}) {t:.2f}G total, {r:.2f}G reserved, {a:.2f}G allocated, {f:.2f}G free')
LOGGER.info(f'{prefix}{d} ({properties.name}) {t:.2f}G total, {r:.2f}G reserved, {a:.2f}G allocated, {f:.2f}G free')

batch_sizes = [1, 2, 4, 8, 16]
try:
img = [torch.zeros(b, 3, imgsz, imgsz) for b in batch_sizes]
y = profile(img, model, n=3, device=device)
except Exception as e:
print(f'{prefix}{e}')
LOGGER.warning(f'{prefix}{e}')

y = [x[2] for x in y if x] # memory [2]
batch_sizes = batch_sizes[:len(y)]
p = np.polyfit(batch_sizes, y, deg=1) # first degree polynomial fit
b = int((f * fraction - p[1]) / p[0]) # y intercept (optimal batch size)
print(f'{prefix}Using batch-size {b} for {d} {t * fraction:.2f}G/{t:.2f}G ({fraction * 100:.0f}%)')
LOGGER.info(f'{prefix}Using batch-size {b} for {d} {t * fraction:.2f}G/{t:.2f}G ({fraction * 100:.0f}%)')
return b
6 changes: 3 additions & 3 deletions utils/plots.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,8 +17,8 @@
import torch
from PIL import Image, ImageDraw, ImageFont

from utils.general import (Timeout, check_requirements, clip_coords, increment_path, is_ascii, is_chinese, try_except,
user_config_dir, xywh2xyxy, xyxy2xywh)
from utils.general import (LOGGER, Timeout, check_requirements, clip_coords, increment_path, is_ascii, is_chinese,
try_except, user_config_dir, xywh2xyxy, xyxy2xywh)
from utils.metrics import fitness

# Settings
Expand Down Expand Up @@ -328,7 +328,7 @@ def plot_val_study(file='', dir='', x=None): # from utils.plots import *; plot_
@Timeout(30) # known issue https://github.com/ultralytics/yolov5/issues/5611
def plot_labels(labels, names=(), save_dir=Path('')):
# plot dataset labels
print('Plotting labels... ')
LOGGER.info(f"Plotting labels to {save_dir / 'labels.jpg'}... ")
c, b = labels[:, 0], labels[:, 1:].transpose() # classes, boxes
nc = int(c.max() + 1) # number of classes
x = pd.DataFrame(b.transpose(), columns=['x', 'y', 'width', 'height'])
Expand Down

0 comments on commit 8a79868

Please sign in to comment.