Skip to content

Commit

Permalink
Update feature_visualization() (ultralytics#3807)
Browse files Browse the repository at this point in the history
* Update `feature_visualization()`

Only plot for data with height, width > 1

* cleanup

* Cleanup
  • Loading branch information
glenn-jocher authored Jun 28, 2021
1 parent 06b414b commit 2a8d9fb
Showing 1 changed file with 21 additions and 19 deletions.
40 changes: 21 additions & 19 deletions utils/plots.py
Original file line number Diff line number Diff line change
Expand Up @@ -448,26 +448,28 @@ def plot_results(start=0, stop=0, bucket='', id=(), labels=(), save_dir=''):
fig.savefig(Path(save_dir) / 'results.png', dpi=200)


def feature_visualization(features, module_type, module_idx, n=64):
def feature_visualization(x, module_type, stage, n=64):
"""
features: Features to be visualized
x: Features to be visualized
module_type: Module type
module_idx: Module layer index within model
stage: Module stage within model
n: Maximum number of feature maps to plot
"""
project, name = 'runs/features', 'exp'
save_dir = increment_path(Path(project) / name) # increment run
save_dir.mkdir(parents=True, exist_ok=True) # make dir

plt.figure(tight_layout=True)
blocks = torch.chunk(features, features.shape[1], dim=1) # block by channel dimension
n = min(n, len(blocks))
for i in range(n):
feature = transforms.ToPILImage()(blocks[i].squeeze())
ax = plt.subplot(int(math.sqrt(n)), int(math.sqrt(n)), i + 1)
ax.axis('off')
plt.imshow(feature) # cmap='gray'

f = f"layer_{module_idx}_{module_type.split('.')[-1]}_features.png"
print(f'Saving {save_dir / f}...')
plt.savefig(save_dir / f, dpi=300)
batch, channels, height, width = x.shape # batch, channels, height, width
if height > 1 and width > 1:
project, name = 'runs/features', 'exp'
save_dir = increment_path(Path(project) / name) # increment run
save_dir.mkdir(parents=True, exist_ok=True) # make dir

plt.figure(tight_layout=True)
blocks = torch.chunk(x, channels, dim=1) # block by channel dimension
n = min(n, len(blocks))
for i in range(n):
feature = transforms.ToPILImage()(blocks[i].squeeze())
ax = plt.subplot(int(math.sqrt(n)), int(math.sqrt(n)), i + 1)
ax.axis('off')
plt.imshow(feature) # cmap='gray'

f = f"stage_{stage}_{module_type.split('.')[-1]}_features.png"
print(f'Saving {save_dir / f}...')
plt.savefig(save_dir / f, dpi=300)

0 comments on commit 2a8d9fb

Please sign in to comment.