forked from apache/spark
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Implement the KMeans API for spark.ml Pipelines in Python
- Loading branch information
Showing
1 changed file
with
194 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,194 @@ | ||
# | ||
# Licensed to the Apache Software Foundation (ASF) under one or more | ||
# contributor license agreements. See the NOTICE file distributed with | ||
# this work for additional information regarding copyright ownership. | ||
# The ASF licenses this file to You under the Apache License, Version 2.0 | ||
# (the "License"); you may not use this file except in compliance with | ||
# the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# | ||
|
||
from pyspark.ml.util import keyword_only | ||
from pyspark.ml.wrapper import JavaEstimator, JavaModel | ||
from pyspark.ml.param.shared import * | ||
from pyspark.mllib.common import inherit_doc | ||
from pyspark.mllib.linalg import _convert_to_vector | ||
|
||
__all__ = ['KMeans', 'KMeansModel'] | ||
|
||
|
||
class KMeansModel(JavaModel): | ||
""" | ||
Model fitted by KMeans. | ||
""" | ||
|
||
def clusterCenters(self): | ||
"""Get the cluster centers, represented as a list of NumPy arrays.""" | ||
return [c.toArray() for c in self._call_java("clusterCenters")] | ||
|
||
|
||
@inherit_doc | ||
class KMeans(JavaEstimator, HasFeaturesCol, HasMaxIter, HasSeed): | ||
""" | ||
K-means Clustering | ||
>>> from pyspark.mllib.linalg import Vectors | ||
>>> data = [(Vectors.dense([0.0, 0.0]),), (Vectors.dense([1.0, 1.0]),), | ||
... (Vectors.dense([9.0, 8.0]),), (Vectors.dense([8.0, 9.0]),)] | ||
>>> df = sqlContext.createDataFrame(data, ["features"]) | ||
>>> kmeans = KMeans().setK(2).setSeed(1).setFeaturesCol("features") | ||
>>> model = kmeans.fit(df) | ||
>>> centers = model.clusterCenters() | ||
>>> len(centers) | ||
2 | ||
>>> transformed = model.transform(df) | ||
>>> transformed.columns | ||
[u'features', u'prediction'] | ||
>>> rows = sorted(transformed.collect(), key = lambda r: r[0]) | ||
>>> rows[0].prediction == rows[1].prediction | ||
True | ||
>>> rows[2].prediction == rows[3].prediction | ||
True | ||
""" | ||
|
||
@keyword_only | ||
def __init__(self, k=2): | ||
super(KMeans, self).__init__() | ||
self._java_obj = self._new_java_obj("org.apache.spark.ml.clustering.KMeans", self.uid) | ||
self.k = Param(self, "k", "number of clusters you want") | ||
self.epsilon = Param(self, "epsilon", "distance threshold to have coveraged") | ||
self.runs = Param(self, "runs", "number runs of the algorithm to execute in parallel") | ||
self.seed = Param(self, "seed", "random seed") | ||
self.initializationMode = Param(self, "initializationMode", "initialization algorithm") | ||
self.initializationSteps = Param(self, "initializationSteps", | ||
"steps for k-means initialization mode") | ||
self._setDefault(k=2, maxIter=20, runs=1, epsilon=1e-4, | ||
initializationMode="k-means||", initializationSteps=5) | ||
kwargs = self.__init__._input_kwargs | ||
self.setParams(**kwargs) | ||
|
||
def _create_model(self, java_model): | ||
return KMeansModel(java_model) | ||
|
||
@keyword_only | ||
def setParams(self, k=2, maxIter=20, runs=1, epsilon=1e-4, | ||
initializationMode="k-means||", initializationSteps=5): | ||
""" | ||
setParams(self, k=2, maxIter=20, runs=1, initializationMode="k-means||"): | ||
Sets params for KMeans. | ||
""" | ||
kwargs = self.setParams._input_kwargs | ||
return self._set(**kwargs) | ||
|
||
def setK(self, value): | ||
""" | ||
Sets the value of :py:attr:`k`. | ||
>>> algo = KMeans().setK(10) | ||
>>> algo.getK() | ||
10 | ||
""" | ||
self._paramMap[self.k] = value | ||
return self | ||
|
||
def getK(self): | ||
""" | ||
Gets the value of `k` | ||
""" | ||
return self.getOrDefault(self.k) | ||
|
||
def setEpsilon(self, value): | ||
""" | ||
Sets the value of :py:attr:`epsilon`. | ||
>>> algo = KMeans().setEpsilon(1e-5) | ||
>>> abs(algo.getEpsilon() - 1e-5) < 1e-5 | ||
True | ||
""" | ||
self._paramMap[self.epsilon] = value | ||
return self | ||
|
||
def getEpsilon(self): | ||
""" | ||
Gets the value of `epsilon` | ||
""" | ||
return self.getOrDefault(self.epsilon) | ||
|
||
def setRuns(self, value): | ||
""" | ||
Sets the value of :py:attr:`runs`. | ||
>>> algo = KMeans().setRuns(10) | ||
>>> algo.getRuns() | ||
10 | ||
""" | ||
self._paramMap[self.runs] = value | ||
return self | ||
|
||
def getRuns(self): | ||
""" | ||
Gets the value of `runs` | ||
""" | ||
return self.getOrDefault(self.runs) | ||
|
||
def setInitializationMode(self, value): | ||
""" | ||
Sets the value of :py:attr:`initializationMode`. | ||
>>> algo = KMeans() | ||
>>> algo.getInitializationMode() | ||
'k-means||' | ||
>>> algo = algo.setInitializationMode("random") | ||
>>> algo.getInitializationMode() | ||
'random' | ||
""" | ||
self._paramMap[self.initializationMode] = value | ||
return self | ||
|
||
def getInitializationMode(self): | ||
""" | ||
Gets the value of `initializationMode` | ||
""" | ||
return self.getOrDefault(self.initializationMode) | ||
|
||
def setInitializationSteps(self, value): | ||
""" | ||
Sets the value of :py:attr:`initializationSteps`. | ||
>>> algo = KMeans().setInitializationSteps(10) | ||
>>> algo.getInitializationSteps() | ||
10 | ||
""" | ||
self._paramMap[self.initializationSteps] = value | ||
return self | ||
|
||
def getInitializationSteps(self): | ||
""" | ||
Gets the value of `initializationSteps` | ||
""" | ||
return self.getOrDefault(self.initializationSteps) | ||
|
||
|
||
if __name__ == "__main__": | ||
import doctest | ||
from pyspark.context import SparkContext | ||
from pyspark.sql import SQLContext | ||
globs = globals().copy() | ||
# The small batch size here ensures that we see multiple batches, | ||
# even in these small test examples: | ||
sc = SparkContext("local[2]", "ml.clustering tests") | ||
sqlContext = SQLContext(sc) | ||
globs['sc'] = sc | ||
globs['sqlContext'] = sqlContext | ||
(failure_count, test_count) = doctest.testmod(globs=globs, optionflags=doctest.ELLIPSIS) | ||
sc.stop() | ||
if failure_count: | ||
exit(-1) |