🔥🔥This repo is the official implementation of 'DAC-Net : An Light-weight U-shaped Network Based Efficient Convolution And Dual-Attention for Thyroid Nodule Segmentation', accepted at Computers in Biology and Medicine2024🔥🔥
- python 3.9
- pytorch 2.1.0
- torchvision 0.16.0
Install from the requirements.txt
using:
pip install -r requirements.txt
-
The DDTI datasets can be found here (Link) and the TN3K datasets can be found here (Link), divided into a 7:1:2 ratio.
-
Then prepare the datasets in the following format for easy use of the code:
├── datasets
├── DDTI
│ ├── Test_Folder
│ │ ├── img
│ │ └── labelcol
│ ├── Train_Folder
│ │ ├── img
│ │ └── labelcol
│ └── Val_Folder
│ ├── img
│ └── labelcol
└── TN3k
├── Test_Folder
│ ├── img
│ └── labelcol
├── Train_Folder
│ ├── img
│ └── labelcol
└── Val_Folder
├── img
└── labelcol
First, modify the model, dataset and training hyperparameters (including learning rate, batch size img size and optimizer etc) in Config.py
Then simply run the training code.
python train_model.py
If you find this work useful in your research or use this dataset in your work, please consider citing the following papers:
@article{2024DAC,
title={DAC-Net: A light-weight U-shaped network based efficient convolution and attention for thyroid nodule segmentation},
author={ Yang, Yingwei and Huang, Haiguang and Shao, Yingsheng and Chen, Beilei },
journal={Computers in Biology and Medicine},
volume={180},
year={2024},
}