Skip to content

Commit

Permalink
perf: Make /push async (#4650)
Browse files Browse the repository at this point in the history
  • Loading branch information
robhowley authored Oct 21, 2024
1 parent 651ef71 commit 61abf89
Show file tree
Hide file tree
Showing 7 changed files with 311 additions and 40 deletions.
13 changes: 11 additions & 2 deletions sdk/python/feast/feature_server.py
Original file line number Diff line number Diff line change
Expand Up @@ -165,7 +165,7 @@ async def get_online_features(body=Depends(get_body)):
)

@app.post("/push", dependencies=[Depends(inject_user_details)])
def push(body=Depends(get_body)):
async def push(body=Depends(get_body)):
request = PushFeaturesRequest(**json.loads(body))
df = pd.DataFrame(request.df)
actions = []
Expand Down Expand Up @@ -201,13 +201,22 @@ def push(body=Depends(get_body)):
for feature_view in fvs_with_push_sources:
assert_permissions(resource=feature_view, actions=actions)

store.push(
push_params = dict(
push_source_name=request.push_source_name,
df=df,
allow_registry_cache=request.allow_registry_cache,
to=to,
)

should_push_async = (
store._get_provider().async_supported.online.write
and to in [PushMode.ONLINE, PushMode.ONLINE_AND_OFFLINE]
)
if should_push_async:
await store.push_async(**push_params)
else:
store.push(**push_params)

@app.post("/write-to-online-store", dependencies=[Depends(inject_user_details)])
def write_to_online_store(body=Depends(get_body)):
request = WriteToFeatureStoreRequest(**json.loads(body))
Expand Down
137 changes: 108 additions & 29 deletions sdk/python/feast/feature_store.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import asyncio
import itertools
import os
import warnings
Expand All @@ -33,6 +34,7 @@
import pandas as pd
import pyarrow as pa
from colorama import Fore, Style
from fastapi.concurrency import run_in_threadpool
from google.protobuf.timestamp_pb2 import Timestamp
from tqdm import tqdm

Expand Down Expand Up @@ -1423,26 +1425,13 @@ def tqdm_builder(length):
end_date,
)

def push(
self,
push_source_name: str,
df: pd.DataFrame,
allow_registry_cache: bool = True,
to: PushMode = PushMode.ONLINE,
):
"""
Push features to a push source. This updates all the feature views that have the push source as stream source.
Args:
push_source_name: The name of the push source we want to push data to.
df: The data being pushed.
allow_registry_cache: Whether to allow cached versions of the registry.
to: Whether to push to online or offline store. Defaults to online store only.
"""
def _fvs_for_push_source_or_raise(
self, push_source_name: str, allow_cache: bool
) -> set[FeatureView]:
from feast.data_source import PushSource

all_fvs = self.list_feature_views(allow_cache=allow_registry_cache)
all_fvs += self.list_stream_feature_views(allow_cache=allow_registry_cache)
all_fvs = self.list_feature_views(allow_cache=allow_cache)
all_fvs += self.list_stream_feature_views(allow_cache=allow_cache)

fvs_with_push_sources = {
fv
Expand All @@ -1457,7 +1446,27 @@ def push(
if not fvs_with_push_sources:
raise PushSourceNotFoundException(push_source_name)

for fv in fvs_with_push_sources:
return fvs_with_push_sources

def push(
self,
push_source_name: str,
df: pd.DataFrame,
allow_registry_cache: bool = True,
to: PushMode = PushMode.ONLINE,
):
"""
Push features to a push source. This updates all the feature views that have the push source as stream source.
Args:
push_source_name: The name of the push source we want to push data to.
df: The data being pushed.
allow_registry_cache: Whether to allow cached versions of the registry.
to: Whether to push to online or offline store. Defaults to online store only.
"""
for fv in self._fvs_for_push_source_or_raise(
push_source_name, allow_registry_cache
):
if to == PushMode.ONLINE or to == PushMode.ONLINE_AND_OFFLINE:
self.write_to_online_store(
fv.name, df, allow_registry_cache=allow_registry_cache
Expand All @@ -1467,22 +1476,42 @@ def push(
fv.name, df, allow_registry_cache=allow_registry_cache
)

def write_to_online_store(
async def push_async(
self,
push_source_name: str,
df: pd.DataFrame,
allow_registry_cache: bool = True,
to: PushMode = PushMode.ONLINE,
):
fvs = self._fvs_for_push_source_or_raise(push_source_name, allow_registry_cache)

if to == PushMode.ONLINE or to == PushMode.ONLINE_AND_OFFLINE:
_ = await asyncio.gather(
*[
self.write_to_online_store_async(
fv.name, df, allow_registry_cache=allow_registry_cache
)
for fv in fvs
]
)

if to == PushMode.OFFLINE or to == PushMode.ONLINE_AND_OFFLINE:

def _offline_write():
for fv in fvs:
self.write_to_offline_store(
fv.name, df, allow_registry_cache=allow_registry_cache
)

await run_in_threadpool(_offline_write)

def _get_feature_view_and_df_for_online_write(
self,
feature_view_name: str,
df: Optional[pd.DataFrame] = None,
inputs: Optional[Union[Dict[str, List[Any]], pd.DataFrame]] = None,
allow_registry_cache: bool = True,
):
"""
Persists a dataframe to the online store.
Args:
feature_view_name: The feature view to which the dataframe corresponds.
df: The dataframe to be persisted.
inputs: Optional the dictionary object to be written
allow_registry_cache (optional): Whether to allow retrieving feature views from a cached registry.
"""
feature_view_dict = {
fv_proto.name: fv_proto
for fv_proto in self.list_all_feature_views(allow_registry_cache)
Expand All @@ -1509,10 +1538,60 @@ def write_to_online_store(
df = pd.DataFrame(df)
except Exception as _:
raise DataFrameSerializationError(df)
return feature_view, df

def write_to_online_store(
self,
feature_view_name: str,
df: Optional[pd.DataFrame] = None,
inputs: Optional[Union[Dict[str, List[Any]], pd.DataFrame]] = None,
allow_registry_cache: bool = True,
):
"""
Persists a dataframe to the online store.
Args:
feature_view_name: The feature view to which the dataframe corresponds.
df: The dataframe to be persisted.
inputs: Optional the dictionary object to be written
allow_registry_cache (optional): Whether to allow retrieving feature views from a cached registry.
"""

feature_view, df = self._get_feature_view_and_df_for_online_write(
feature_view_name=feature_view_name,
df=df,
inputs=inputs,
allow_registry_cache=allow_registry_cache,
)
provider = self._get_provider()
provider.ingest_df(feature_view, df)

async def write_to_online_store_async(
self,
feature_view_name: str,
df: Optional[pd.DataFrame] = None,
inputs: Optional[Union[Dict[str, List[Any]], pd.DataFrame]] = None,
allow_registry_cache: bool = True,
):
"""
Persists a dataframe to the online store asynchronously.
Args:
feature_view_name: The feature view to which the dataframe corresponds.
df: The dataframe to be persisted.
inputs: Optional the dictionary object to be written
allow_registry_cache (optional): Whether to allow retrieving feature views from a cached registry.
"""

feature_view, df = self._get_feature_view_and_df_for_online_write(
feature_view_name=feature_view_name,
df=df,
inputs=inputs,
allow_registry_cache=allow_registry_cache,
)
provider = self._get_provider()
await provider.ingest_df_async(feature_view, df)

def write_to_offline_store(
self,
feature_view_name: str,
Expand Down
27 changes: 27 additions & 0 deletions sdk/python/feast/infra/online_stores/online_store.py
Original file line number Diff line number Diff line change
Expand Up @@ -67,6 +67,33 @@ def online_write_batch(
"""
pass

async def online_write_batch_async(
self,
config: RepoConfig,
table: FeatureView,
data: List[
Tuple[EntityKeyProto, Dict[str, ValueProto], datetime, Optional[datetime]]
],
progress: Optional[Callable[[int], Any]],
) -> None:
"""
Writes a batch of feature rows to the online store asynchronously.
If a tz-naive timestamp is passed to this method, it is assumed to be UTC.
Args:
config: The config for the current feature store.
table: Feature view to which these feature rows correspond.
data: A list of quadruplets containing feature data. Each quadruplet contains an entity
key, a dict containing feature values, an event timestamp for the row, and the created
timestamp for the row if it exists.
progress: Function to be called once a batch of rows is written to the online store, used
to show progress.
"""
raise NotImplementedError(
f"Online store {self.__class__.__name__} does not support online write batch async"
)

@abstractmethod
def online_read(
self,
Expand Down
56 changes: 47 additions & 9 deletions sdk/python/feast/infra/passthrough_provider.py
Original file line number Diff line number Diff line change
Expand Up @@ -188,6 +188,20 @@ def online_write_batch(
if self.online_store:
self.online_store.online_write_batch(config, table, data, progress)

async def online_write_batch_async(
self,
config: RepoConfig,
table: Union[FeatureView, BaseFeatureView, OnDemandFeatureView],
data: List[
Tuple[EntityKeyProto, Dict[str, ValueProto], datetime, Optional[datetime]]
],
progress: Optional[Callable[[int], Any]],
) -> None:
if self.online_store:
await self.online_store.online_write_batch_async(
config, table, data, progress
)

def offline_write_batch(
self,
config: RepoConfig,
Expand Down Expand Up @@ -291,8 +305,8 @@ def retrieve_online_documents(
)
return result

def ingest_df(
self,
@staticmethod
def _prep_rows_to_write_for_ingestion(
feature_view: Union[BaseFeatureView, FeatureView, OnDemandFeatureView],
df: pd.DataFrame,
field_mapping: Optional[Dict] = None,
Expand All @@ -307,10 +321,6 @@ def ingest_df(
for entity in feature_view.entity_columns
}
rows_to_write = _convert_arrow_to_proto(table, feature_view, join_keys)

self.online_write_batch(
self.repo_config, feature_view, rows_to_write, progress=None
)
else:
if hasattr(feature_view, "entity_columns"):
join_keys = {
Expand All @@ -336,9 +346,37 @@ def ingest_df(
join_keys[entity.name] = entity.dtype.to_value_type()
rows_to_write = _convert_arrow_to_proto(table, feature_view, join_keys)

self.online_write_batch(
self.repo_config, feature_view, rows_to_write, progress=None
)
return rows_to_write

def ingest_df(
self,
feature_view: Union[BaseFeatureView, FeatureView, OnDemandFeatureView],
df: pd.DataFrame,
field_mapping: Optional[Dict] = None,
):
rows_to_write = self._prep_rows_to_write_for_ingestion(
feature_view=feature_view,
df=df,
field_mapping=field_mapping,
)
self.online_write_batch(
self.repo_config, feature_view, rows_to_write, progress=None
)

async def ingest_df_async(
self,
feature_view: Union[BaseFeatureView, FeatureView, OnDemandFeatureView],
df: pd.DataFrame,
field_mapping: Optional[Dict] = None,
):
rows_to_write = self._prep_rows_to_write_for_ingestion(
feature_view=feature_view,
df=df,
field_mapping=field_mapping,
)
await self.online_write_batch_async(
self.repo_config, feature_view, rows_to_write, progress=None
)

def ingest_df_to_offline_store(self, feature_view: FeatureView, table: pa.Table):
if feature_view.batch_source.field_mapping is not None:
Expand Down
42 changes: 42 additions & 0 deletions sdk/python/feast/infra/provider.py
Original file line number Diff line number Diff line change
Expand Up @@ -141,6 +141,32 @@ def online_write_batch(
"""
pass

@abstractmethod
async def online_write_batch_async(
self,
config: RepoConfig,
table: FeatureView,
data: List[
Tuple[EntityKeyProto, Dict[str, ValueProto], datetime, Optional[datetime]]
],
progress: Optional[Callable[[int], Any]],
) -> None:
"""
Writes a batch of feature rows to the online store asynchronously.
If a tz-naive timestamp is passed to this method, it is assumed to be UTC.
Args:
config: The config for the current feature store.
table: Feature view to which these feature rows correspond.
data: A list of quadruplets containing feature data. Each quadruplet contains an entity
key, a dict containing feature values, an event timestamp for the row, and the created
timestamp for the row if it exists.
progress: Function to be called once a batch of rows is written to the online store, used
to show progress.
"""
pass

def ingest_df(
self,
feature_view: Union[BaseFeatureView, FeatureView, OnDemandFeatureView],
Expand All @@ -157,6 +183,22 @@ def ingest_df(
"""
pass

async def ingest_df_async(
self,
feature_view: Union[BaseFeatureView, FeatureView, OnDemandFeatureView],
df: pd.DataFrame,
field_mapping: Optional[Dict] = None,
):
"""
Persists a dataframe to the online store asynchronously.
Args:
feature_view: The feature view to which the dataframe corresponds.
df: The dataframe to be persisted.
field_mapping: A dictionary mapping dataframe column names to feature names.
"""
pass

def ingest_df_to_offline_store(
self,
feature_view: FeatureView,
Expand Down
Loading

0 comments on commit 61abf89

Please sign in to comment.