Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Softsign optimization #585

Merged
merged 4 commits into from
Sep 14, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
23 changes: 18 additions & 5 deletions hls4ml/templates/quartus/firmware/nnet_utils/nnet_activation.h
Original file line number Diff line number Diff line change
Expand Up @@ -368,17 +368,30 @@ void softplus(data_T data[CONFIG_T::n_in], res_T res[CONFIG_T::n_in])
template<class data_T, class res_T, typename CONFIG_T>
void softsign(data_T data[CONFIG_T::n_in], res_T res[CONFIG_T::n_in])
{
static const int MAX_VALUE=8;
// Initialize the lookup table
#include "activation_tables/softsign_table.tb"

// Index into the lookup table based on data
#pragma unroll
for (int ii=0; ii<CONFIG_T::n_in; ii++) {
ac_int<16> data_round = (data[ii]*CONFIG_T::table_size/16).to_int();
ac_int<16> index = data_round + 8*CONFIG_T::table_size/16;
if (index < 0) index = 0;
if (index > CONFIG_T::table_size-1) index = CONFIG_T::table_size-1;
res[ii] = (res_T) softsign_table[index];
data_T temp hls_register;
res_T temp2 hls_register;
if(data[ii] < 0 ){
temp = -data[ii];
}
else{
temp = data[ii];
}
ac_int<16> index = (temp*CONFIG_T::table_size/MAX_VALUE).to_int();
if (temp > MAX_VALUE) index = CONFIG_T::table_size-1;
temp2 = (res_T) softsign_table[index];
if(data[ii] < 0 ){
res[ii] = -temp2;
}
else{
res[ii] = temp2;
}
}
}

Expand Down
11 changes: 8 additions & 3 deletions hls4ml/writer/quartus_writer.py
Original file line number Diff line number Diff line change
Expand Up @@ -592,6 +592,8 @@ def __write_softplus_table(self, model, path):
h_file.close()

def __write_softsign_table(self, model, path):
MAX_VALUE = 8
MIN_VALUE = 0
table_name = 'softsign_table'
table_size = self.__get_table_size(model, 'softsign')

Expand All @@ -600,10 +602,13 @@ def __write_softsign_table(self, model, path):

sep = ''
for i in range(table_size):
in_val = 2 * 8.0 * (i - float(table_size) / 2.0) / float(table_size)

in_val = i * (MAX_VALUE-MIN_VALUE)/float(table_size) + (MAX_VALUE-MIN_VALUE)/(float(table_size)*2) + MIN_VALUE

real_val = in_val / (np.fabs(in_val) + 1.)
h_file.write(sep + str(real_val))
sep = ", "
if(real_val >= 0):
h_file.write(sep + str(real_val))
sep = ", "

h_file.write('};\n')
h_file.write('\n#endif\n')
Expand Down
54 changes: 54 additions & 0 deletions test/pytest/test_softsign.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,54 @@
import hls4ml
import tensorflow as tf
import numpy as np
import pytest
from sklearn.metrics import accuracy_score
from pathlib import Path

test_root_path = Path(__file__).parent

def flat_distribution(shape):
return np.random.rand(*shape)


@pytest.fixture()
def generate_data(function, input_shape):
return function((1000, *input_shape))


# TODO: include latency strategy with flat_distribution when it can be made to pass
@pytest.mark.parametrize('backend,strategy,function,input_shape,io_type', [
('Vivado', 'stable', flat_distribution, (4,), 'io_parallel'),
('Quartus', 'stable', flat_distribution, (4,), 'io_parallel'),

# IO_stram avaliable just for VIVADO
('Vivado', 'stable', flat_distribution, (4,), 'io_stream'),
('Vivado', 'stable', flat_distribution, (4, 4, 3), 'io_stream')
])
def test_softsign(backend, strategy, generate_data, input_shape, io_type):
X = generate_data
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Activation(input_shape=input_shape, activation='softsign', name='softsign'))
model.compile()

f_type = 'ac_fixed<18,8,true,AC_RND,AC_SAT>' if backend == 'Quartus' else 'ap_fixed<18,8,AP_RND,AP_SAT>'
cfg = hls4ml.utils.config_from_keras_model(model, granularity='name')
cfg['LayerName']['softsign']['Strategy'] = strategy
cfg['LayerName']['softsign']['inv_table_t'] = f_type
cfg['LayerName']['softsign']['exp_table_t'] = f_type

odir = str(test_root_path / 'hls4mlprj_softsign_{}'.format(strategy))
hls_model = hls4ml.converters.convert_from_keras_model(model, hls_config=cfg, io_type=io_type,
output_dir=odir, backend=backend)
hls_model.compile()

y_keras = model.predict(X)
y_hls4ml = hls_model.predict(X).reshape(y_keras.shape)

acc_hls4ml = accuracy_score(np.argmax(y_keras, axis=-1).ravel(), np.argmax(y_hls4ml, axis=-1).ravel())

print('Accuracy hls4ml relative to keras: {}'.format(acc_hls4ml))

assert acc_hls4ml >= 0.98